AEC-VIKOR求解过程
论文写作或者计算需要帮助可发邮件到 hwstu # sohu.com 把 #替换成@,请说清来意,不必拐弯抹角,浪费相互之间的时间。(收费项目)
流程图
上面是通用版的AECM流程图,可以针对任意的两组综合评价值。
该方法对常规的VIKOR创新点,或者说针对VIKOR方法的不足之处主要为:
VIKOR求妥协解,都是拍脑袋直接取一个系数为0.5。最多讨论一下大于0.5属于什么,小于0.5属于什么。
本方法明确的解出了,总共有多少种排序。即聚类的数目。这是首次提出拐点等,而且其数学水平只需初中水平就可以求解出。
妥协解中其本质是运用曼哈顿距离,可以构造出无数种妥协解的方式。除非多个拐点重叠,否则任何一种妥协解的聚类特征是完全一致的。变化的只是K值区间而已
AEC则更进一步,它能指出,最优妥协解未必就是落在k=0.5这个妥协值上。
优胜与劣汰两种情境求解出的结果可能并不一致。
原始矩阵如下:
M11×15−PN1−PN2−PE1−PS1−PS2SN1SN2SN3SE1SS1RN1RN2RE1RE2RS120110.654302103278.55777110.104246565426.6234180.4849691280.5183353210.7342256210.0506825048.7142004928.9509448460.85081225610.37380.27984335115.65191176.220120.64018787230.20726980.100574919430.06551080.4987607640.5242936160.7201909330.0538007718.3111415158.5474707210.86880451211.18725.39528839690.62085170.120130.634839501232.74381520.095228796433.0918120.5107935770.5341741920.7257462690.0533593718.1627412598.8385683470.88954598912.8210872.1477943857.04467144.420140.621034465198.64981470.094446274435.30897330.5241300180.5450602110.7301761330.053459358.32412364910.365663580.9121202668.6712075.05247967.53527159.420150.617366121179.16370290.093725645438.68019250.5400161560.5474085260.7270551770.0529973588.45632659310.109664090.93274150850.2913182.8333451652.87565157.220160.614656439134.57243110.093564023442.17425920.5589234880.5476048360.7328020920.0525278618.33388233410.734757340.95116402750.5414328.1413355939.46599138.9420170.60538891793.619725470.086820781445.11314960.5777858570.5487979950.7373360450.0521995748.05340243811.019500720.95820752362.215557.7327761583.50207252.86st10.41000.054000.30.70.80.110200.95123000050000150st20.62000.16000.50.50.70.088150.992000040000100st30.73000.28000.60.40.60.056100.86150003000050st40.84000.310000.70.30.50.02450.73100002000020
采用的归一方法如下
极差法
正向指标公式:nij=oij−min(oj)max(oj)−min(oj)
负向指标公式:nij=max(oj)−oijmax(oj)−min(oj)
归一化矩阵如下
M11×15−PN1−PN2−PE1−PS1−PS2SN1SN2SN3SE1SS1RN1RN2RE1RE2RS120110.3640.3960.7830.9560.5380.5460.7810.3840.7860.2630.5840.12300.3640.67120120.40.5540.7980.950.5030.5610.7340.4230.7190.2360.6540.1370.0590.4740.64520130.4130.5460.8190.9450.4730.5850.7520.4170.6940.2560.7340.1660.1540.5740.53420140.4470.6570.8220.9410.440.6130.7670.4180.7210.3580.8220.0960.2080.6730.59920150.4570.7210.8250.9360.40.6190.7570.4120.7430.3410.9010.7990.2570.7610.58920160.4630.8660.8260.930.3530.6190.7760.4070.7220.3820.9730.8030.3070.8640.51120170.48710.8530.9250.3060.6220.7910.4020.6760.401110.36211st110.979111111110.9680.15210.7210.558st20.50.6530.80.6670.50.50.6670.750.6670.6670.7750.1010.5580.4810.344st30.250.3260.40.3330.250.250.3330.3750.3330.3330.3870.0510.3370.240.129st40000000000000.11600
正极值点构成
M1×15−PN1−PN2−PE1−PS1−PS2SN1SN2SN3SE1SS1RN1RN2RE1RE2RS1Zone+111111111111111负极值点构成
M1×15−PN1−PN2−PE1−PS1−PS2SN1SN2SN3SE1SS1RN1RN2RE1RE2RS1Zone−000000000000000采用的是熵权法(EWM)求权重
M2×15−PN1−PN2−PE1−PS1−PS2SN1SN2SN3SE1SS1RN1RN2RE1RE2RS1EWM所得权重0.05630.05220.040.04450.05920.04860.04250.05650.04260.07420.04440.19650.12340.05730.0619权重大小顺序891511510147133121264
VIKOR的最大化群体效益和最小化反对意见的个别遗憾
最大化群体效益 |
最小化反对意见的个别遗憾 |
Si=m∑j=1ωj(Zone+j−nijZone+j−Zone−j) |
Ri=maxj=1(ωj(Zone+j−nijZone+j−Zone−j)) |
代入权重值等即得(S R)两列矩阵,两列都为负向指标
M11×2期望值遗憾值20110.60670.172420120.58450.169720130.56330.16420140.54050.177820150.38760.091820160.36860.085620170.27750.0789st10.21260.1668st20.50220.1767st30.74710.1867st40.98580.1965
妥协解的公式
公式 |
Qi=(1−k)(Si−Min(Si)Max(Si)−Min(Si))+k(Ri−Min(Ri)Max(Ri)−Min(Ri)) |
截距方式分析k的值——也是常规方法
一般的论文对于下面的公式
Qi=(1−k)(Si−Min(Si)Max(Si)−Min(Si))+k(Ri−Min(Ri)Max(Ri)−Min(Ri))
其中的k随便说一下取0.5就拉倒了。这个好比小学生的四舍五入一样天经地义。事实上这个值很有得商榷的。它是一个敏感性有强有弱的范围。
对于每一行令ai=Si−Min(Si)Max(Si)−Min(Si)bi=Ri−Min(Ri)Max(Ri)−Min(Ri)
Qi=(1−k)ai+kbi
对于 x,y样本
{(1−k)ax+kbx(1−k)ay+kby
以上问题就变成了求两条线段是否在[0,1]值域内有相交的问题,此题属于初中的知识范畴,不再详细描述。
(1−k)ax+kbx=(1−k)ay+kby
ax−kax+kbx=ay−kay+kby
ax−ay=−kay+kby+kax−kbx
ax−ay=(−ay+by+ax−bx)k
k=ax−ay(ax−ay+by−bx)
基础矩阵如下
Base=M11×2aibi20110.50970.795420120.48090.772820130.45360.724220140.42410.841520150.22640.110320160.20180.057120170.0840st100.7474st20.37450.8322st30.69130.9169st411
所谓拐点,就是上述线段中的交点
所谓排序分析,即每个决策系数k对应的Q值的优劣排序,数值越低越优。两个拐点之间要素的排序是稳定一致的
拐点处(交点),存在着至少一次,某两个要素的排序是一致的。
交点坐标位置接近,以至于观测不到交点,下面会变换坐标,使得拐点等距,这样方便观测拐点具体的值。
拐点k值分析
Qkmatrix=M11×12k=0k=0.101k=0.201k=0.226k=0.262k=0.423k=0.453k=0.642k=0.65k=0.786k=0.951k=120110.510.5390.5670.5740.5850.6310.6390.6930.6960.7340.7820.79520120.4810.510.540.5470.5570.6040.6130.6680.6710.710.7590.77320130.4540.4810.5080.5150.5250.5680.5760.6270.630.6660.7110.72420140.4240.4660.5080.5190.5340.6010.6130.6920.6960.7520.8210.84120150.2260.2150.2030.20.1960.1770.1740.1520.1510.1350.1160.1120160.2020.1870.1730.1690.1640.1410.1360.1090.1080.0880.0640.05720170.0840.0760.0670.0650.0620.0480.0460.030.0290.0180.0040st100.0760.150.1690.1960.3160.3390.480.4860.5880.7110.747st20.3750.4210.4660.4780.4940.5680.5820.6680.6720.7340.810.832st30.6910.7140.7370.7420.750.7870.7930.8360.8380.8690.9060.917st4111111111111
排序分析
上述是负向指标,数值越小越好,每一列数值最小的排第一。因此排序情况如下:
Qrank=M11×12k=0k=0.101k=0.201k=0.226k=0.262k=0.423k=0.453k=0.642k=0.65k=0.786k=0.951k=12011999999998777201288888876666620137766655555442014666777788999201544443333333320163332222222222017211111111111st1112234444445st2555555667788st3101010101010101010101010st4111111111111111111111111
聚类特征
序号 |
聚类特征-对应k值区段 |
区段大小 |
Q值排序 |
1 | 0<k< 0.101067 | 0.101067 | st1≻2017≻2016≻2015≻st2≻2014≻2013≻2012≻2011≻st3≻st4 |
---|
2 | 0.101067<k< 0.200967 | 0.0999 | 2017≻st1≻2016≻2015≻st2≻2014≻2013≻2012≻2011≻st3≻st4 |
---|
3 | 0.200967<k< 0.226209 | 0.025242 | 2017≻st1≻2016≻2015≻st2≻2013≻2014≻2012≻2011≻st3≻st4 |
---|
4 | 0.226209<k< 0.262163 | 0.035954 | 2017≻2016≻st1≻2015≻st2≻2013≻2014≻2012≻2011≻st3≻st4 |
---|
5 | 0.262163<k< 0.422854 | 0.160691 | 2017≻2016≻2015≻st1≻st2≻2013≻2014≻2012≻2011≻st3≻st4 |
---|
6 | 0.422854<k< 0.45294 | 0.030086 | 2017≻2016≻2015≻st1≻2013≻st2≻2014≻2012≻2011≻st3≻st4 |
---|
7 | 0.45294<k< 0.642061 | 0.189121 | 2017≻2016≻2015≻st1≻2013≻st2≻2012≻2014≻2011≻st3≻st4 |
---|
8 | 0.642061<k< 0.650297 | 0.008236 | 2017≻2016≻2015≻st1≻2013≻2012≻st2≻2014≻2011≻st3≻st4 |
---|
9 | 0.650297<k< 0.786398 | 0.136101 | 2017≻2016≻2015≻st1≻2013≻2012≻st2≻2011≻2014≻st3≻st4 |
---|
10 | 0.786398<k< 0.951409 | 0.165011 | 2017≻2016≻2015≻st1≻2013≻2012≻2011≻st2≻2014≻st3≻st4 |
---|
11 | 0.951409<k< 1 | 0.048591 | 2017≻2016≻2015≻2013≻st1≻2012≻2011≻st2≻2014≻st3≻st4 |
AEC求解过程
排名 |
要素所占区段 |
0 | 2017=0.898933 st1=0.101067 |
---|
1 | 2016=0.773791 st1=0.125142 2017=0.101067 |
---|
2 | 2015=0.737837 2016=0.226209 st1=0.035954 |
---|
3 | st1=0.689246 2015=0.262163 2013=0.048591 |
---|
4 | 2013=0.528555 st2=0.422854 st1=0.048591 |
---|
5 | 2012=0.357939 2013=0.221887 st2=0.219207 2014=0.200967 |
---|
6 | 2014=0.251973 2011=0.213602 2013=0.200967 2012=0.189121 st2=0.144337 |
---|
7 | 2012=0.45294 st2=0.213602 2014=0.197357 2011=0.136101 |
---|
8 | 2011=0.650297 2014=0.349703 |
---|
9 | st3=1 |
---|
10 | st4=1 |
排名 |
最优妥协解 |
优胜情境 | 2017≻2016≻2015≻st1≻2013≻st2≻2012≻2014≻2011≻st3≻st4 |
---|
劣汰情境 | 2017≻2016≻2015≻st1≻2013≻st2≻2012≻2014≻2011≻st3≻st4 |
扯蛋模型