AEC-VIKOR求解过程


论文写作或者计算需要帮助可发邮件到 hwstu # sohu.com 把 #替换成@,请说清来意,不必拐弯抹角,浪费相互之间的时间。(收费项目)

流程图


上面是通用版的AECM流程图,可以针对任意的两组综合评价值。

该方法对常规的VIKOR创新点,或者说针对VIKOR方法的不足之处主要为:

VIKOR求妥协解,都是拍脑袋直接取一个系数为0.5。最多讨论一下大于0.5属于什么,小于0.5属于什么。

本方法明确的解出了,总共有多少种排序。即聚类的数目。这是首次提出拐点等,而且其数学水平只需初中水平就可以求解出。

妥协解中其本质是运用曼哈顿距离,可以构造出无数种妥协解的方式。除非多个拐点重叠,否则任何一种妥协解的聚类特征是完全一致的。变化的只是K值区间而已

AEC则更进一步,它能指出,最优妥协解未必就是落在k=0.5这个妥协值上。

优胜与劣汰两种情境求解出的结果可能并不一致。

原始矩阵如下:


$$ \begin{array}{c|c|c|c|c|c|c}{M_{11 \times15}} & -PN1 & -PN2 & -PE1 & -PS1 & -PS2 &SN1 &SN2 &SN3 &SE1 &SS1 &RN1 &RN2 &RE1 &RE2 &RS1\\ \hline 2011 &0.654302103 &278.5577711 &0.104246565 &426.623418 &0.484969128 &0.518335321 &0.734225621 &0.050682504 &8.714200492 &8.950944846 &0.850812256 &10.3 &7380.279843 &35115.65191 &176.2\\ \hline 2012 &0.64018787 &230.2072698 &0.100574919 &430.0655108 &0.498760764 &0.524293616 &0.720190933 &0.053800771 &8.311141515 &8.547470721 &0.868804512 &11.1 &8725.395288 &39690.62085 &170.1\\ \hline 2013 &0.634839501 &232.7438152 &0.095228796 &433.091812 &0.510793577 &0.534174192 &0.725746269 &0.053359371 &8.162741259 &8.838568347 &0.889545989 &12.82 &10872.14779 &43857.04467 &144.4\\ \hline 2014 &0.621034465 &198.6498147 &0.094446274 &435.3089733 &0.524130018 &0.545060211 &0.730176133 &0.05345935 &8.324123649 &10.36566358 &0.912120266 &8.67 &12075.052 &47967.53527 &159.4\\ \hline 2015 &0.617366121 &179.1637029 &0.093725645 &438.6801925 &0.540016156 &0.547408526 &0.727055177 &0.052997358 &8.456326593 &10.10966409 &0.932741508 &50.29 &13182.83334 &51652.87565 &157.2\\ \hline 2016 &0.614656439 &134.5724311 &0.093564023 &442.1742592 &0.558923488 &0.547604836 &0.732802092 &0.052527861 &8.333882334 &10.73475734 &0.951164027 &50.54 &14328.14133 &55939.46599 &138.94\\ \hline 2017 &0.605388917 &93.61972547 &0.086820781 &445.1131496 &0.577785857 &0.548797995 &0.737336045 &0.052199574 &8.053402438 &11.01950072 &0.958207523 &62.2 &15557.73277 &61583.50207 &252.86\\ \hline st1 &0.4 &100 &0.05 &400 &0.3 &0.7 &0.8 &0.1 &10 &20 &0.95 &12 &30000 &50000 &150\\ \hline st2 &0.6 &200 &0.1 &600 &0.5 &0.5 &0.7 &0.08 &8 &15 &0.9 &9 &20000 &40000 &100\\ \hline st3 &0.7 &300 &0.2 &800 &0.6 &0.4 &0.6 &0.05 &6 &10 &0.8 &6 &15000 &30000 &50\\ \hline st4 &0.8 &400 &0.3 &1000 &0.7 &0.3 &0.5 &0.02 &4 &5 &0.7 &3 &10000 &20000 &20\\ \hline \end{array} $$


采用的归一方法如下


极差法

正向指标公式:$$ n_{ij} = \frac{{o_{ij}-min(o_{j})}}{{max(o_{j})-min(o_{j})}} $$

负向指标公式:$$ n_{ij} = \frac{max(o_{j})-{o_{ij}}}{{max(o_{j})-min(o_{j})}} $$


归一化矩阵如下


$$ \begin{array}{c|c|c|c|c|c|c}{M_{11 \times15}} & -PN1 & -PN2 & -PE1 & -PS1 & -PS2 &SN1 &SN2 &SN3 &SE1 &SS1 &RN1 &RN2 &RE1 &RE2 &RS1\\ \hline 2011 &0.364 &0.396 &0.783 &0.956 &0.538 &0.546 &0.781 &0.384 &0.786 &0.263 &0.584 &0.123 &0 &0.364 &0.671\\ \hline 2012 &0.4 &0.554 &0.798 &0.95 &0.503 &0.561 &0.734 &0.423 &0.719 &0.236 &0.654 &0.137 &0.059 &0.474 &0.645\\ \hline 2013 &0.413 &0.546 &0.819 &0.945 &0.473 &0.585 &0.752 &0.417 &0.694 &0.256 &0.734 &0.166 &0.154 &0.574 &0.534\\ \hline 2014 &0.447 &0.657 &0.822 &0.941 &0.44 &0.613 &0.767 &0.418 &0.721 &0.358 &0.822 &0.096 &0.208 &0.673 &0.599\\ \hline 2015 &0.457 &0.721 &0.825 &0.936 &0.4 &0.619 &0.757 &0.412 &0.743 &0.341 &0.901 &0.799 &0.257 &0.761 &0.589\\ \hline 2016 &0.463 &0.866 &0.826 &0.93 &0.353 &0.619 &0.776 &0.407 &0.722 &0.382 &0.973 &0.803 &0.307 &0.864 &0.511\\ \hline 2017 &0.487 &1 &0.853 &0.925 &0.306 &0.622 &0.791 &0.402 &0.676 &0.401 &1 &1 &0.362 &1 &1\\ \hline st1 &1 &0.979 &1 &1 &1 &1 &1 &1 &1 &1 &0.968 &0.152 &1 &0.721 &0.558\\ \hline st2 &0.5 &0.653 &0.8 &0.667 &0.5 &0.5 &0.667 &0.75 &0.667 &0.667 &0.775 &0.101 &0.558 &0.481 &0.344\\ \hline st3 &0.25 &0.326 &0.4 &0.333 &0.25 &0.25 &0.333 &0.375 &0.333 &0.333 &0.387 &0.051 &0.337 &0.24 &0.129\\ \hline st4 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.116 &0 &0\\ \hline \end{array} $$

正极值点构成
$$ \begin{array}{c|c|c|c|c|c|c}{M_{1 \times15}} & -PN1 & -PN2 & -PE1 & -PS1 & -PS2 &SN1 &SN2 &SN3 &SE1 &SS1 &RN1 &RN2 &RE1 &RE2 &RS1\\ \hline \mathbf{Zone^+} &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1\\ \hline \end{array} $$
负极值点构成
$$ \begin{array}{c|c|c|c|c|c|c}{M_{1 \times15}} & -PN1 & -PN2 & -PE1 & -PS1 & -PS2 &SN1 &SN2 &SN3 &SE1 &SS1 &RN1 &RN2 &RE1 &RE2 &RS1\\ \hline \mathbf{Zone^-} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline \end{array} $$

采用的CRITIC方法求权重


$$ \begin{array}{c|c|c|c|c|c|c}{M_{2 \times15}} & -PN1 & -PN2 & -PE1 & -PS1 & -PS2 &SN1 &SN2 &SN3 &SE1 &SS1 &RN1 &RN2 &RE1 &RE2 &RS1\\ \hline CRITIC方法所得权重 &0.0532 &0.0668 &0.0663 &0.0779 &0.0587 &0.06 &0.0658 &0.0601 &0.0637 &0.0626 &0.0728 &0.0884 &0.0677 &0.0701 &0.0659\\ \hline 权重大小顺序 &15 &6 &7 &2 &14 &13 &9 &12 &10 &11 &3 &1 &5 &4 &8\\ \hline \end{array} $$

VIKOR的最大化群体效益和最小化反对意见的个别遗憾


最大化群体效益
最小化反对意见的个别遗憾
$$ S_i = \sum_\limits{j=1}^m{ \omega_{j} \left(\frac{Zone_j^+ -n_{ij}}{Zone_j^+ -Zone_j^-} \right)} \quad \quad $$ $$ R_i = \max_\limits{j=1} { \left( \omega_{j} (\frac{Zone_j^+ -n_{ij}}{Zone_j^+ -Zone_j^-} )\right)} \quad \quad $$

代入权重值等即得(S R)两列矩阵,两列都为负向指标


$$ \begin{array}{c|c|c|c|c|c|c}{M_{11 \times2}} &期望值 &遗憾值\\ \hline 2011 &0.4998 &0.0775\\ \hline 2012 &0.4785 &0.0763\\ \hline 2013 &0.4624 &0.0738\\ \hline 2014 &0.4294 &0.08\\ \hline 2015 &0.3507 &0.0504\\ \hline 2016 &0.3304 &0.0469\\ \hline 2017 &0.2576 &0.0432\\ \hline st1 &0.1274 &0.075\\ \hline st2 &0.4332 &0.0795\\ \hline st3 &0.716 &0.084\\ \hline st4 &0.9922 &0.0884\\ \hline \end{array} $$

妥协解的公式


公式
$$ Q_i = \left( 1-k \right) \left(\frac{S_i - Min(S_i)}{Max(S_i) -Min(S_i)} \right) + k\left(\frac{R_i - Min(R_i)}{Max(R_i) -Min(R_i)} \right) $$

截距方式分析k的值——也是常规方法


一般的论文对于下面的公式

$$ Q_i = \left( 1-k \right) \left(\frac{S_i - Min(S_i)}{Max(S_i) -Min(S_i)} \right) + k\left(\frac{R_i - Min(R_i)}{Max(R_i) -Min(R_i)} \right) $$

其中的$k$随便说一下取0.5就拉倒了。这个好比小学生的四舍五入一样天经地义。事实上这个值很有得商榷的。它是一个敏感性有强有弱的范围。

$$ 对于每一行 令a_i =\frac{S_i - Min(S_i)}{Max(S_i) -Min(S_i)} \quad \quad b_i =\frac{R_i - Min(R_i)}{Max(R_i) -Min(R_i)} $$

$$ Q_i = \left( 1-k \right) a_i + kb_i \quad \quad $$

对于 $x,y$样本

$$ \begin{cases} \left( 1-k \right) a_x + kb_x \\ \left( 1-k \right) a_y + kb_y \end{cases} $$

以上问题就变成了求两条线段是否在$[0,1]$值域内有相交的问题,此题属于初中的知识范畴,不再详细描述。

$$ \left( 1-k \right) a_x + kb_x =\left( 1-k \right) a_y + kb_y $$

$$ a_x-k a_x + kb_x =a_y-k a_y + kb_y $$

$$ a_x- a_y=-k a_y + kb_y +k a_x - kb_x $$

$$ a_x- a_y=(- a_y + b_y + a_x - b_x)k $$

$$ k =\frac{a_x- a_y}{( a_x- a_y + b_y - b_x)} $$


基础矩阵如下


$$Base=\begin{array}{c|c|c|c|c|c|c}{M_{11 \times2}} &a_i &b_i\\ \hline 2011 &0.4306 &0.7602\\ \hline 2012 &0.4059 &0.7337\\ \hline 2013 &0.3874 &0.6768\\ \hline 2014 &0.3492 &0.8142\\ \hline 2015 &0.2582 &0.1576\\ \hline 2016 &0.2348 &0.0816\\ \hline 2017 &0.1506 &0\\ \hline st1 &0 &0.7039\\ \hline st2 &0.3537 &0.8033\\ \hline st3 &0.6806 &0.9026\\ \hline st4 &1 &1\\ \hline \end{array} $$

求解线段在决策区间的交点,k代表决策系数


所谓拐点,就是上述线段中的交点

所谓排序分析,即每个决策系数k对应的Q值的优劣排序,数值越低越优。两个拐点之间要素的排序是稳定一致的

拐点处(交点),存在着至少一次,某两个要素的排序是一致的。

交点坐标位置接近,以至于观测不到交点,下面会变换坐标,使得拐点等距,这样方便观测拐点具体的值。


拐点k值分析


$$Qk_{matrix}=\begin{array}{c|c|c|c|c|c|c}{M_{11 \times13}} &k=0 &k=0.176 &k=0.21 &k=0.217 &k=0.274 &k=0.288 &k=0.321 &k=0.413 &k=0.429 &k=0.601 &k=0.641 &k=0.934 &k=1\\ \hline 2011 &0.431 &0.489 &0.5 &0.502 &0.521 &0.526 &0.536 &0.567 &0.572 &0.629 &0.642 &0.739 &0.76\\ \hline 2012 &0.406 &0.464 &0.475 &0.477 &0.496 &0.5 &0.511 &0.541 &0.547 &0.603 &0.616 &0.712 &0.734\\ \hline 2013 &0.387 &0.438 &0.448 &0.45 &0.467 &0.471 &0.48 &0.507 &0.512 &0.561 &0.573 &0.658 &0.677\\ \hline 2014 &0.349 &0.431 &0.447 &0.45 &0.477 &0.483 &0.498 &0.541 &0.549 &0.629 &0.647 &0.784 &0.814\\ \hline 2015 &0.258 &0.24 &0.237 &0.236 &0.231 &0.229 &0.226 &0.217 &0.215 &0.198 &0.194 &0.164 &0.158\\ \hline 2016 &0.235 &0.208 &0.203 &0.202 &0.193 &0.191 &0.186 &0.171 &0.169 &0.143 &0.137 &0.092 &0.082\\ \hline 2017 &0.151 &0.124 &0.119 &0.118 &0.109 &0.107 &0.102 &0.088 &0.086 &0.06 &0.054 &0.01 &0\\ \hline st1 &0 &0.124 &0.148 &0.153 &0.193 &0.203 &0.226 &0.291 &0.302 &0.423 &0.451 &0.658 &0.704\\ \hline st2 &0.354 &0.433 &0.448 &0.451 &0.477 &0.483 &0.498 &0.539 &0.547 &0.624 &0.642 &0.774 &0.803\\ \hline st3 &0.681 &0.72 &0.727 &0.729 &0.741 &0.745 &0.752 &0.772 &0.776 &0.814 &0.823 &0.888 &0.903\\ \hline st4 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1\\ \hline \end{array} $$

排序分析


上述是负向指标,数值越小越好,每一列数值最小的排第一。因此排序情况如下:

$$Q_{rank}=\begin{array}{c|c|c|c|c|c|c}{M_{11 \times13}} &k=0 &k=0.176 &k=0.21 &k=0.217 &k=0.274 &k=0.288 &k=0.321 &k=0.413 &k=0.429 &k=0.601 &k=0.641 &k=0.934 &k=1\\ \hline 2011 &9 &9 &9 &9 &9 &9 &9 &9 &9 &8 &7 &7 &7\\ \hline 2012 &8 &8 &8 &8 &8 &8 &8 &7 &6 &6 &6 &6 &6\\ \hline 2013 &7 &7 &6 &5 &5 &5 &5 &5 &5 &5 &5 &4 &4\\ \hline 2014 &5 &5 &5 &5 &6 &6 &7 &7 &8 &8 &9 &9 &9\\ \hline 2015 &4 &4 &4 &4 &4 &4 &3 &3 &3 &3 &3 &3 &3\\ \hline 2016 &3 &3 &3 &3 &2 &2 &2 &2 &2 &2 &2 &2 &2\\ \hline 2017 &2 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1\\ \hline st1 &1 &1 &2 &2 &2 &3 &3 &4 &4 &4 &4 &4 &5\\ \hline st2 &6 &6 &6 &7 &7 &6 &6 &6 &6 &7 &7 &8 &8\\ \hline st3 &10 &10 &10 &10 &10 &10 &10 &10 &10 &10 &10 &10 &10\\ \hline st4 &11 &11 &11 &11 &11 &11 &11 &11 &11 &11 &11 &11 &11\\ \hline \end{array} $$


聚类特征


序号 聚类特征-对应k值区段 区段大小 Q值排序
10<$k$< 0.176220.17622$st1 \succ 2017 \succ 2016 \succ 2015 \succ 2014 \succ st2 \succ 2013 \succ 2012 \succ 2011 \succ st3 \succ st4$
20.17622<$k$< 0.2104790.034259$2017 \succ st1 \succ 2016 \succ 2015 \succ 2014 \succ st2 \succ 2013 \succ 2012 \succ 2011 \succ st3 \succ st4$
30.210479<$k$< 0.2172470.006768$2017 \succ st1 \succ 2016 \succ 2015 \succ 2014 \succ 2013 \succ st2 \succ 2012 \succ 2011 \succ st3 \succ st4$
40.217247<$k$< 0.2739380.056691$2017 \succ st1 \succ 2016 \succ 2015 \succ 2013 \succ 2014 \succ st2 \succ 2012 \succ 2011 \succ st3 \succ st4$
50.273938<$k$< 0.287910.013972$2017 \succ 2016 \succ st1 \succ 2015 \succ 2013 \succ 2014 \succ st2 \succ 2012 \succ 2011 \succ st3 \succ st4$
60.28791<$k$< 0.3209380.033028$2017 \succ 2016 \succ st1 \succ 2015 \succ 2013 \succ st2 \succ 2014 \succ 2012 \succ 2011 \succ st3 \succ st4$
70.320938<$k$< 0.4133260.092388$2017 \succ 2016 \succ 2015 \succ st1 \succ 2013 \succ st2 \succ 2014 \succ 2012 \succ 2011 \succ st3 \succ st4$
80.413326<$k$< 0.4291260.0158$2017 \succ 2016 \succ 2015 \succ st1 \succ 2013 \succ st2 \succ 2012 \succ 2014 \succ 2011 \succ st3 \succ st4$
90.429126<$k$< 0.6012760.17215$2017 \succ 2016 \succ 2015 \succ st1 \succ 2013 \succ 2012 \succ st2 \succ 2014 \succ 2011 \succ st3 \succ st4$
100.601276<$k$< 0.6413420.040066$2017 \succ 2016 \succ 2015 \succ st1 \succ 2013 \succ 2012 \succ st2 \succ 2011 \succ 2014 \succ st3 \succ st4$
110.641342<$k$< 0.9344920.29315$2017 \succ 2016 \succ 2015 \succ st1 \succ 2013 \succ 2012 \succ 2011 \succ st2 \succ 2014 \succ st3 \succ st4$
120.934492<$k$< 10.065508$2017 \succ 2016 \succ 2015 \succ 2013 \succ st1 \succ 2012 \succ 2011 \succ st2 \succ 2014 \succ st3 \succ st4$

AEC求解过程


排名 要素所占区段
02017=0.82378   st1=0.17622   
12016=0.726062   2017=0.17622   st1=0.097718   
22015=0.679062   2016=0.273938   st1=0.047   
3st1=0.613554   2015=0.320938   2013=0.065508   
42013=0.717245   2014=0.217247   st1=0.065508   
52012=0.570874   st2=0.351695   2014=0.070663   2013=0.006768   
62011=0.358658   st2=0.289647   2013=0.210479   2014=0.125416   2012=0.0158   
72012=0.413326   st2=0.358658   2014=0.18795   2011=0.040066   
82011=0.601276   2014=0.398724   
9st3=1   
10st4=1   
排名 最优妥协解
优胜情境$2017 \succ 2016 \succ 2015 \succ st1 \succ 2013 \succ 2012 \succ st2 \succ 2014 \succ 2011 \succ st3 \succ st4$
劣汰情境 $2017 \succ 2016 \succ 2015 \succ st1 \succ 2013 \succ 2012 \succ st2 \succ 2014 \succ 2011 \succ st3 \succ st4$

扯蛋模型