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A B S T R A C T   

Metro systems have become high-vulnerability entities due to the increasing frequency and severity of urban 
flooding. Flood events may cause cascading failure to metro systems; therefore, exploring the cascading failure 
risk of the metro system is a prerequisite for urban flooding prevention and risk management. This study pre-
sented a Rank-Order Centroid (ROC) based CIA-ISM (Cross-Impact Analysis, and Interpretive Structural 
Modeling) method to accurately assess the reliability of emergency management in metro systems under extreme 
rainfall conditions. We applied this approach to a metro flooding case in Zhengzhou on July 20, 2021. The 
reliability results show that efficient rescue and timely shutdown notification are the most critical causal events 
in the cascading failure scenarios. The events of system vulnerability that have the most significant impact on 
casualties, property losses, and social panic are, respectively, timely notification of the shutdown, humanitarian 
aid, and public opinion guidance. In forecast scenarios with emergency management measures in effect, the 
probability of casualties, property losses, and social panic decrease by 96.3%, 58.58%, and 64.28%, respectively. 
Moreover, a comparison with Bayesian Network (BN) model verified the effectiveness of the ROC-based CIA-ISM 
approach. Based on the study, we suggest the metro companies release a timely notification of the shutdown. 
This study can provide scientific data for decision-makers to reasonably develop emergency strategies, signifi-
cantly reducing flood losses and promoting cities’ sustainable development.   

1. Introduction 

Recently, with China’s urbanization, many metro lines have been 
constructed to reduce congestion [1–3]. Metro systems have been the 
lifelines of megacities, and hazards or incidents involving metro systems 
will cause severe problems in cities’ working and living conditions [4]. 
The metro systems are considered to be the most significant in-
frastructures of megacities. However, climate change has profound im-
plications for the effectiveness and viability of critical infrastructures 
(especially metro systems), making the issue increasingly topical [5]. In 
2021 alone, many metropolitan areas in China suffered severe metro 
flooding. For example, from 16:00 to 17:00, on July 20, the hourly 
rainfall was 201.9 mm and the passenger flow was 967. Floodwater 
caused by torrential rain encroached on the tunnel from Shakeoulu and 
Haitansi stations on Zhengzhou metro line 5. The flood in the metro 
reached people’s necks, causing deaths and five injuries among the more 
than 500 trapped people [6]. The increasing damage due to extreme 
rainfall events has forced authorities in flood-prone cities to reevaluate 
their policy regarding the reliability of metro systems to future heavy 

rainfall events. 
Cascading failure [7] is a kind of failure in a system comprising 

interconnected parts, in which a part’s failure can trigger successive 
parts’ failure. Due to the coupling relationships in complex networks, 
which are interconnected and continuously generate other nodes. Var-
iations in any one node will affect other nodes potentially in the 
network; in particular, it will affect unexpected nodes that may amplify 
the damage of the accident. A well-known phenomenon of cascading is 
The Butterfly Effect. Cascading failure can be predicted by 
scenario-based methods, otherwise serious side effects can occur if un-
predictable. To address the above issue, numerous scholars have studied 
the cascading failure of various critical infrastructures using the risk 
assessment methods, such as Bayesian networks (BNs) [8–10], Directed 
acyclic graph (DAG) [11–13], Petri Net (PN) [14–16], Markov process 
(MP) [17–19], etc. Fan et al. [20] proposed a method based on BNs, MP 
and deep reinforcement learning (DRL) to improve the reliability of 
supply in natural gas pipeline networks. For a similar problem of pipe-
line networks [21], the reliability of pipeline networks is optimized by a 
novel Manifold-based Conditional Bayesian network model. Liu et al. 
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[22] explored the integration of triangular membership and regional 
center method to SPN for the modeling and evaluation of gas leakage 
emergency rescue process in gas transmission station. As the traditional 
critical infrastructure, the hospital is a crucial social component, espe-
cially during the spread of the Coronavirus (COVID-19) pandemic. Liu 
et al. [23] evaluated the seismic resilience of hospital buildings using 
BNs, considering the cascading relationships on nonstructural compo-
nents. Silva et al. [24] proposed reliability and availability models 
adopting stochastic Petri net (SPN) to quantify the impact of energy 
resources and rejuvenate medical sensor networks’ dependability. 
Similarly, the cascading failure mode of metro systems has been studied 
widely. Ye et al. [25] proposed a novel grey- Markov prediction model to 
describe different contribution degrees of historical information of 
future change trends of system characteristics. Li and Wu [26] proposed 
a deep reinforcement learning (RL)-based decision support system for 
stakeholders to optimally manage the critical components of trans-
portation networks to minimize the network-level losses induced by 
hurricanes. Ghoushchi et al. [27] proposed a novel approach to select 
the optimal landfill for medical waste using Multi-Criteria Decision--
Making (MCDM) methods. Wang et al. [28] applied the CIA-ISM 
approach to analyze emergency scenarios. Chen et al. [29] discussed 
the complex interrelationships among the barriers to 
building-integrated photovoltaics in Singapore. With the rapid devel-
opment of technology, the emerging infrastructures, such as the Internet 
of Things (IoT) [30], cloud data centers [31], electric-cyber infrastruc-
ture [32], and computerization in supply chains [33], have aroused wild 
attention. 

In this paper, the metro system is identified as a dynamic one 
impacted by extreme climate. The analysis of cascading process and the 
decoupling are complex in this case. Scenario-based methods can clearly 
describe the cascading failure and coupling mode, which can improve 
the decoupling efficiency and accuracy. In addition, system elements are 
difficult to quantify. Therefore, they are simplified into events. The 
system components involved in the cascading process are in the form of 
events, which reduce the computational dimension. 

This study aims to address the research gaps inherent in the previous 
researches, which are summarized as follows: 

1. Cascading failure analysis in the metro system has been conducted 
based on research with interaction coupling relationships and decou-
pling among system elements. With the development of extreme climate, 
the analysis of cascading failure mode becomes difficult in complex 
systems. Hence, how to properly assess the cross-impact relationships 
between essential events places an emerging challenge for the research 
into cascading failure. 

2. Emergency measures are critical factors in reducing losses under 
extreme rainfall conditions. However, when investigating metro flood-
ing risk, few studies have attempted to assess the efficiency of emer-
gency management measures. Therefore, how to precisely analyze the 
priority and efficiency of emergency measures is the problem to be 
resolved in this study, which we believe is essential to the cascading 
failure research on metro systems. 

3. In most studies, the CIA-ISM method’s event probabilities are 
determined in two ways: assessed by historical case data and the Delphi 
method. The former CIA-ISM has accurate results but it is always hard to 
collect data, while the latter method is efficient in assessment but usu-
ally has violent subjectivity. Therefore, it is necessary to develop a 
scenario-based method that makes a trade-off between veracity and 
objectivity. 

In this study, we focus on the metro systems under extreme rainfall 
conditions as the unit of analysis and regard excessive rainfall as the 
external perturbation of the system. Then based on the conventional 
CIA-ISM model, the ROC-based CIA-ISM model is proposed to infer the 
cascading failure scenario process in metro systems under extreme 

rainfall conditions, especially the cross-impact relationships between 
critical events. Finally, several representative scenario graphs are built 
to predict the influence of the specific events on the outcome events1. 
Furthermore, we adopt the BN model to demonstrate the efficiency of 
the ROC-based CIA-ISM. The findings can provide suggestions for metro 
management and emergency repair strategies for the metro system 
department under extreme rainfall conditions. 

Our main contributions to this paper are: 

We adopt the ROC method that was originally developed in multi-
criteria decision analysis (MCDA) for the elicitation of criteria 
weight, which turns ordinal judgments into ratio-scale information 
[34–36]. This type of elicitation only requires experts to provide a 
ranking of events according to their likelihood, providing a fast and 
nonnumerical elicitation process. Probabilities are subsequently 
approximated from the ranking by an algorithm based on the prin-
ciple of maximum entropy. By using the ROC-based CIA-ISM method, 
we could fast obtain the initial probability of events. In addition, we 
could accurately assess the scenario inference process of cascading 
failure in complex systems and improve their evaluation efficiency. 
The adoption of the ROC-based CIA-ISM approach that we proposed 
in this article was able to assess the reliability of critical emergency 
measures in metro systems under extreme rainfall conditions. We 
had predictably formalized its use for the ranking of emergency 
measures. In addition, we extended the prediction scale, so it could 
also estimate the efficiency of emergency management measures in 
complex systems comprehensively. Furthermore, we provided 
several special emergency measures, indicating their significance. 
Using a simulation study, we tested the priority of emergency events 
under three outcome conditions. We compared the method to BN 
model and find that the proposed method is more accurate than the 
scenario-based method that we test. We took the ROC-based CIA-ISM 
approach in practice and adopted it to the “7.20” accident to get the 
cascading failure process, and gave some advices. 

The rest of the paper is organized as follows: Section 2 describes the 
methodology we developed to perform the cascading failure analysis; 
Section 3 describes the test case used to demonstrate the applicability of 
the developed method; The analysis and results are presented in Section 
4; Section 5 presents the conclusions. 

2. Methodology 

The ROC-based CIA-ISM model introduced in this paper comprises 
the Rank-order centroid method and the CIA-ISM model. Fig. 1 shows 
the collaborative modeling process based on the ROC-based CIA-ISM 
model. 

2.1. Rank-order centroid method 

ROC is a method to obtain probability derivation based on numerical 
ordering. The ROC method can get criteria weights, which turns ordinal 
judgments into ratio-scale information [34–37]. This type of elicitation 
only requires experts to rank events according to their likelihood, 
providing a fast and nonnumerical elicitation process. Probabilities are 
subsequently approximated from the ranking by an algorithm based on 
the principle of maximum entropy [38]. 

ROC can be used to elicit the probabilities for four different types of 
events: mutually exclusive binary events, the probability density func-
tion of one variable, stochastically independent binary events, and low- 
probability binary events.  

(1) Mutually exclusive binary events 

1 The outcome events represent the categories of events. 
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Experts are given the list of binary events S1, S2..., Sn and are asked 
to rank them according to their likelihood of occurrence; thus, the 
resulting ranking is consecutively transformed into probabilities. The 
information given by the experts about the probabilities can be sum-
marized by P1≥P2≥...≥Pn and ΣPi=1. The average vector obtained by 
the ROC method contains the probability of each event. An equivalent 
calculation of each probability individually is given by Eq. (1). 

Pi =

∑n

k=i

1
k

n
(1)    

(2) The probability density function of one variable 

For events with the probability density function of one variable, the 
algorithm is the same as the mutually exclusive binary events, and there 
is no procedural difference.  

(3) Stochastically independent binary events 

If the events given by experts are stochastically independent binary 
events, the ranking of events is transformed into probability by the ROC 
method. The ranking essentially assigns each event in the sample an 
order statistic, and an order statistic is defined over a statistical sample 
such that the kth order statistic of a sample is the kth smallest value from 
that sample [39]. When n values within the unit interval are indepen-
dently identically distributed, the i (i≤n) th ordered element is the 
(n+1− i) th order statistic of the uniform distribution, which has the 
expected value of (n+1− i)/(n+1). We can thus assign probabilities for 
the events by Eq. (2): 

Pi =
n + 1 − i

n + 1
(2)    

(4) Low-probability binary events 

The probability of low probability binary events is derived by 
modifying the methods of 1 and 3. The expert needs to make a numerical 
assessment of the event and derive P0 using conventional probabilistic 
methods—the probability that none of the specified events occurs. When 
events are mutually exclusive, theΦ-measures (so calledΦ-measures, 
which are similar to the relative likelihood measures used by Ludke et al. 
[40]) have the same relative magnitudes toward each other as the 
probabilities given by Eq. (1). Φi is calculated by Eq. (3): 

ϕi =

∑n

k=i

1
k

∑n

j=1

1
j

(3) 

Eq. (4) should be employed in the case of stochastically independent 
events. 

ϕi =
n + 1 − i

n
(4) 

The measures calculated by these equations are not yet probabilities, 

but the probability p is also a ratio-scale measure of an event’s likeli-
hood. The two can be mapped into each other by a positive multipli-
cative transformation. If a likelihood ratio between events i and j is 
denoted bij, then: 

bij =
Pi

Pj
=

ϕi

ϕj 

Such that in case j = 1: 

bi1 =
ϕi

ϕ1
=

ϕi

1
= ϕi 

It follows that Eq. (5): 

Pi = ϕiP1 (5) 

TheΦ-measures can be normalized to derive the respective proba-
bilities. In the case of mutually exclusive events, we take advantage of 
the fact that the sum of all event probabilities must be equal to 1-P0; see 
Eq. (6): 

Pi = (1 − P0)
ϕi

∑n

i=1
ϕi

(6) 

Eq. (7) should be employed in the case of stochastically independent 
events. 

∏n

i=1
(1 − ϕiP1)− P0 = 0 (7) 

Because Eq. (7) is an n-order polynomial in P1, it can have up to n 
solutions. In general, n-order polynomials do not have an analytical 
solution for n greater than 4. However, a bisection method for the in-
terval [0,1] can be used to obtain a solution for Eq. (7). Once a P1 is 
found from solving Eq. (7), the other probabilities follow from Eq. (5). 

2.2. CIA-ISM model 

CIA is a methodology used to help determine how relationships be-
tween events affect outcome events, reduce future uncertainty, and 
predict events based on the nonindependence of events occurring [41]. 
Experts evaluate the impact relationship between two events according 
to Table 1 (see Fig. 2 for the evaluation process) and then obtain the 
estimation matrix as the input of the cross-impact matrix. The 
cross-impact matrix is established according to the cross-impact formula 
of Eqs. (8) and (9). The cell in the matrix is the influence factor Cij 
(representing the influence coefficient on Ei), the diagonal cell is the 
overall probability (OPV) , and Gi represents the impact of external 
events on Ei. A positive value of Cij means that the occurrence of Ej can 
push the occurrence of Ei, and a negative value obstructs the occurrence 
(“positive” and “negative” in this paper indicate the mathematical di-
rection of influence “+” and “− ”). 

Cij =
1

1 − Pj

[(

ln
Rij

1 − Rij

)

−

(

ln
Pi

1 − Pi

)]

(8) 

i j represents an event; 
Rij represents the impact that the occurrence of Ej may have on the 

Fig. 1. Collaborative modeling flow chart of the ROC-based CIA-ISM model.  
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event of Ei; 
Pi,j represents the probability for the occurrence of Ei,j. 

Pi =
1

1 + exp
(

− Gi −
∑

k∕=i
CikPk

) (9) 

Pi,k: represents the prediction probability of Ei,k; 
Gi represents the impact of external events on Ei. 
ISM is an effective method to analyze and reveal the structure of 

complex relationships by describing systems and system elements in a 
matrix and graph based on practical experience. The purpose of the ISM 
method is to divide the analyzed system into various subsystems, 
analyze the binary relationship between each factor, reveal the system 
structure through Boolean logic operation, and present it in the most 
straightforward hierarchical directed topology diagram. 

ISM can graphically express a decision model based on the ROC- 
based CIA-ISM and construct scenarios through a series of events; see 
Eq. (10): 

S = {S1, S2, ..., Sn} (10) 

There is a binary relation between the elements in the set S. Ac-
cording to the binary link, the adjacency matrix A can be calculated and 
defined as a binary n × n matrix. The cell in the matrix is aij, which is 
calculated by Eq. (11): 

aij =

{
1, SiKSj
0, SiKSj

(11) 

1 represents the direct connection from node Si to node Sj; 
0 represents no direct connection from node Si to node Sj. 
Matrix A is calculated by Eq. (12) to obtain reachability matrix R: 

R = (A + I)m+1
= (A + I)m

∕= (A + I)m− 1 (12) 

I represent the identity matrix. 
The output of CIA is taken as the input of ISM, and the multilevel 

directed graph is obtained by dividing the hierarchy of the reachable 
matrix R. 

3. Test case 

Metro stations have strong closure, large passenger flow, complex 
passenger flow, and difficult emergency evacuation. Once an accident 
occurs, it quickly causes heavy casualties, induces secondary disasters or 
derivative disasters, and causes negative social impacts [42]. This paper 
intends to analyze the scenario evolution and system vulnerability nodes 
of metro flooding disasters given the cascading failure of metro systems 
in extreme rainfall. It takes the “7.20” metro flooding accident in 
Zhengzhou as an example for verification. 

3.1. Create the accident event set 

Events can be divided into three categories according to their nature 
[43]; see Table 2. 

Initial events (IEi): An initial event is a hypothetical prior or source 
event that has occurred before the disaster or accident and may be true 
or false before the disaster occurs. Initial events can reflect disaster 
preparedness and have a potentially significant impact on dynamic 
events; 

Dynamic events (DEi): Dynamic events can be true or false and are 
related events after the occurrence of disasters; 

Outcome Events (OEi): The result of a disaster or accident. 

3.2. Scenario analysis 

After the event set is determined, the initial probability of the 
possible occurrence of each event is obtained by the ROC method. For 
lack of data in this field, this paper integrates expert opinions to rank the 
event sets from high to low. Using Eqs. (4), (5), and (7), the ordering of 
each event is summarized, and a scientific and rational initial proba-
bility table (Table 3) is obtained. 

Using Eq. (4) to calculate the φ-ratio, the expert assessed the prob-
ability of no uncertain events occurring during the observation period (i. 
e., P0) as 10% and adjusted the multiplication to 0.143 according to Eq. 
(7). Finally, the probability of each index is calculated by Eq. (5). 

The initial probability and estimation matrix of events obtained by 
ROC were taken as the input to CIA, and the cross-impact matrix 
(Table 4) was obtained according to Eq. (8). The value in the cross- 

Table 1 
Score table.  

Score Influence degree 

0.99 Significant positive impact6 

0.9 Obvious positive impact 
0.8 Great positive impact 
0.7 A certain positive impact 
0.6 Slight positive impact 
0.5 No impact 
0.4 Slight negative impact 
0.3 A certain negative impact 
0.2 Great negative impact 
0.1 Obvious negative impact 
0.01 Significant negative impact7  

6 Positive impact indicate the mathematical direction of 
influence “+”. 

7 Negative impact indicate the mathematical direction of 
influence “− ”. 

Fig. 2. Influence diagram with the number of events and the number of esti-
mates needed. 

Table 2 
Set of metro flooding accidents on July 20 in Zhengzhou.  

Event 
Category 

Events Explanation 

Initial events IE1 The maximum daily precipitation of more than 150 mm. 
IE2 Metro flooding occurs during rush hours. 

Dynamic 
events 

DE1 The traffic system is paralyzed. 
DE2 Destruction of buildings, such as a rupture, fall, and 

collapse. 
DE3 Failure of component or structure. 
DE4 Persistent rain. 
DE5 Poor communication or interruption. 
DE6 Heavy rains cause widespread flooding in the area. 
DE7 Professional emergency rescue teams undertake efficient 

rescue tasks. 
DE8 Humanitarian aid can be delivered to the population. 
DE9 Emergency medical care is provided for victims. 
DE10 The government can guide public opinion and defuse 

public discontent effectively. 
DE11 The victims have a strong ability to help themselves. 
DE12 The electricity supplies are disrupted. 
DE13 Surface and underground drainage systems are broken. 
DE14 Metro ventilation system failure. 
DE15 The metro company releases a timely notification of the 

shutdown. 
DE16 Metros are equipped with first aid equipment. 

Outcome 
Events 

OE1 Metro flooding causes heavy casualties. 
OE2 Metro flooding causes substantial economic losses. 
OE3 Poor emergency rescue work has caused social panic.  
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impact matrix represents the influence degree between events. 
To assess the reasonableness of the event set, check the sum of the 

following factors from Table 4: 
| Internal event impacts |=Σ|Cij|=844.85 
| External events impacts |=Σ|Gi|=70.73 
| Total impacts |=Σ|Cij|+Σ|Gi|=915.58 
| Internal event impacts |/| Total impacts |=92.27% 
| External event impacts |/| Total impacts |=7.73% 
The calculations show that events in the event set determine 92.27% 

of the total impact, and 7.73% is determined by events not included in 
the event set. This shows that the event set is comprehensive to a certain 
extent and that the model is feasible. We can obtain the cross-impact 
matrix set limit |Cij| to focus on the most critical events as the input of 
ISM (such as in Fig. 3, when extracting the top 30% of the most signif-
icant effect, the limit for |Cij|= 3.41). 

This process aims to obtain a strongly connected structure that de-
scribes the relationships between events in a directed graph model. If the 
|Cij| value is greater than or equal to the limit, Sj said node to node Si has 
a direct connection. 

The ISM method can represent the forecast scenario with a multilevel 
directed graph structurally and intuitively displaying the direction and 
degree of influence between events. Figs. 4 and 5 show the limits |Cij|=
4.17 (10%) and |Cij|=3.41 (30%), respectively, of the directed graph. In 
the figures, different colors represent different directions of influence. 
The relationship between two events of the same color indicates a pos-
itive influence, while events of different colors denotes a negative 
influence. 

Figs. 4 and 5 reveal cascading failure scenarios in metro systems 
under extreme rainfall conditions. Fig. 4 shows no DE14 because it 
weakens relationships with other events (|Cij| < 4.17). DE1 and DE4 
have the highest coupling degree in cascading failure mode in Fig. 4, 
indicating that traffic system paralysis and continuous rainfall have the 
most significant influence on the outcome events. DE2, DE3, DE12, and 
DE13 followed, indicating that the failure of metro buildings, compo-
nents, power, and drainage systems caused by heavy rain also signifi-
cantly impacted the outcome events. IE2 has a direct positive effect on 
OE1 and OE3, which indicates that metro flooding during rush hours 
will almost certainly cause casualties and social panic. DE7, DE8, DE9, 
DE10, DE11, and DE16 have a direct negative impact on the outcome 
events, indicating that the spread of the outcome events can be effec-
tively contained by efficient rescue tasks and adequate reserve of 
emergency supplies, and timely assistance from society and government. 
DE15 has a direct negative impact on casualties and economic losses, 
which means that the metro company should release a timely notifica-
tion of the shutdown based on the situation of metro flooding and the 
precipitation. IE1, DE1, DE2, DE3, DE4, DE5, DE6, DE12, and DE13 
indirectly impact the outcome events based on cascading failure mode 
through DE7. 

In Fig. 5, the top 30% of solid relationships are selected to construct 
the hierarchy, which contains more causal relationships than in Fig. 4, 
and DE14 is also included. The initial event IE1 has a direct effect on 
DE12. DE8 and DE9 form a micro scenario, meaning that these two 
events have a positive impact and usually occur together. The coupling 
relationship of DE10 increases, indicating that the government’s timely 
guidance of public opinion significantly impacts metro flooding 

accidents. In all emergency response events, the efficient rescue task 
undertaken by rescue teams has a direct and vital impact on reducing 
human casualties (OE1) and alleviating social panic (OE3). 

The combination of the ISM output with the results of the CIA is the 
basis of scenario analysis. This paper aims to evaluate the system 
vulnerability nodes and reliability of emergency management measures 
related to metro flooding accidents through cascading failure mode, so 
relevant events are selected for sensitivity analysis. The initial proba-
bility of related events is changed to determine its influence on each 
event, mainly the result event. Related events are extracted from initial 
and dynamic events based on event nature. The system vulnerability 
events related to metro flooding accidents are as follows: IE2, DE1, DE5, 
DE7, DE8, DE9, DE10, DE15, and DE16. Tables 5 and 6 show the pre-
dicted probabilities of initial and dynamic events, respectively. 

In initial events, IE2 is related to emergency management. The in-
fluence of the critical factor can be tested by changing the initial prob-
ability to analyze the consequences for the other events, especially for 
the outcome events. There are two scenario forecasts in which event IE2 
is supposed to apply to the case (1: occurs; 0: does not occur). The initial 
probability of the other event remains 0.5. Based on the cross-impact 
formula Eq. (9), the probability of the other events under those two 
scenario forecasts can be observed in Table 5. 

From these results, metro flooding during rush hours (IE2) impacted 
the outcome events, and from high to low they are OE1, OE2, and OE3. 
The metro flooding occurrence during non-rush hours is important for 
reducing casualties (OE1), significantly mitigating economic losses and 
alleviating social panic. After the meteorological department issues a 
heavy rainfall warning or before the occurrence of metro flooding, the 
government and relevant departments should make timely preparations 
to evacuate people and issue a notice of metro shutdown. The loss can be 
reduced considerably if the initial event of IE2 does not occur, so timely 
emergency evacuation by government departments is necessary to 
enhance the metro system’s reliability under extreme rainfall condi-
tions. The vulnerability nodes on the path of cascading failure belonging 
to IE2 are DE1, DE7, DE8, and DE9 from Fig. 5 and Table 5. IE2 does not 
cause the change of prediction probability of DE7, DE8, and DE9 
because the rescues will not be interrupted when metro flooding occurs. 
Undoubtedly, the transport system is paralyzed under extreme rainfall 
conditions, thus hindering the efficiency of the rescues. 

Dynamic events related to system vulnerability include DE1, DE5, 
DE7, DE8, DE9, DE10, DE15, and DE16. The same method can be used to 
calculate the influence of these key factors on other events, especially 
the result events. The results are shown in Table 6. S0 indicates that the 
dynamic events related to system vulnerability are in the state of having 
a positive impact on the result events OE1, OE2, and OE3; S9 indicates 
that the dynamic events related to system vulnerability are in the state of 
hurting the result events OE1, OE2, and OE3; and S1-S8 suggest the 
condition of each dynamic event related to system vulnerability. 

According to S1 in Table 6, compared with other dynamic events, 
traffic system paralysis caused by heavy rain has a significant impact on 
human casualties (OE1), economic loss (OE2), and social panic (OE3). 
Compared with S9, ensuring a smooth traffic system flow in post- 
disaster rescue has become crucial to reduce casualties and economic 
losses and alleviate social panic. S2 shows that communication system 
failure or interruption has also become a key factor leading to deaths 

Table 3 
Table of case study results.  

Events Rank φ-ratio Pi Events Rank φ-ratio Pi Events Rank φ-ratio Pi 

IE1 Certain n.a, 100% DE6 4th 0.85 12.16% DE13 5th 0.8 11.44% 
IE2 6th 0.75 10.73% DE7 Certain n.a, 100% DE14 12th 0.45 6.44% 
DE1 3rd 0.9 12.87% DE8 Certain n.a, 100% DE15 2nd 0.95 13.59% 
DE2 8th 0.65 9.30% DE9 Certain n.a, 100% DE16 17th 0.2 2.86% 
DE3 9th 0.6 8.58% DE10 16th 0.25 3.58% OE1 7th 0.7 10.01% 
DE4 14th 0.35 5.01% DE11 13th 0.4 5.72% OE2 1st 1 14.30% 
DE5 11th 0.35 5.01% DE12 10th 0.55 7.87% OE3 15th 0.3 4.29%  
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(OE1), economic losses (OE2), and social panic (OE3) after heavy rain. 
Compared with S9, it can be seen that the government and relevant 
departments should rush to repair the communication system in time 
after the disaster to ensure contact with the people affected. In S3, S4, 
S5, and S8, the probability of dynamic events DE7, DE8, DE9, and DE16 
are equal to 1. This represents an efficient rescue mission, timely hu-
manitarian aid and emergency medical treatment delivery, and com-
plete first-aid tools in metro cars. In this case, human casualties (OE1) 
and economic losses (OE2) can be greatly reduced, and social panic can 
be slightly alleviated. S6 represents the DE10=1 scenario. In the case of 
a single dynamic event, the occurrence of DE10 has the most significant 
impact on helping social panic. Compared with other events, the timely 
release of accurate information by the government, guidance of public 
opinion, and resolution of general dissatisfaction have a more noticeable 
effect on alleviating social panic. In the scenario S7, the metro admin-
istration promptly issued a suspension notice (DE15) in each dynamic 
event scenario, thus significantly reducing casualties. In S9, all the Ta
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Fig. 3. Histogram of the cross-impact factor distribution.  

Fig. 4. Digraph for the limit value |Cij| = 4.17– with 10%.  
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dynamic events related to system vulnerability are in a state of unfa-
vorable influence on the outcome events (DE1 = DE5 = 0, DE7 = DE8 =
DE9 = DE10 = DE15 = DE16 = 1), and the impact of human casualty 
(OE1), economic loss (OE2) and social panic (OE3) is minimized. 

Outcome events can also be used to analyze the direct impact of 
supplementary initial and dynamic events on specific outcome events 
(Tables 7 and 8). 

The initial probability of IE1, DE7, DE8, and DE9 obtained by the 
ROC method in Table 3 is 100%, so they are not included in the influence 
table. According to Table 7, the timely shutdown of metros is the event 

that has the most significant impact on human casualties. First-aid 
equipment in the metro and timely government guidance of public 
opinion had a slight effect on reducing overall deaths. 

In Table 8, continuous rainfall and building damage after flooding 
disasters cause heavy economic loss. Similarly, the government’s 
prompt guidance of public opinion and the provision of first-aid 
equipment in metro cars were the least damaging events to the economy. 

According to Table 9, the government’s prompt guidance of public 
opinion significantly alleviates social panic, which is much higher than 
in other events. Emergency equipment in metro cars has minimal impact 
on alleviating social panic. 

According to Table 6 through Table 9, the metro company issued a 
timely notice of shutdown through the two analysis methods, which can 
significantly reduce casualties. The government promptly guided public 
opinion, which has the most significant influence on alleviating social 
panic. The traffic system disruption, communication, efficient rescue, 
assistance from humanitarian aid, and emergency medical treatment 
significantly impact economic losses. 

4. Analysis and results 

4.1. Comparison with other scenario-based methods 

To further verify the reliability of the proposed method, we 
compared the cascading failure scenarios of the Bayesian network (BN) 
model and the ROC-based CIA-ISM. BN model, a scenario-based method, 
has been widely adopted for maritime accidents [44], blowout accidents 
[45], construction projects [46], and deep learning [47]. The ten cases 
[2–4,6] are collected by using the BN model. The events and prior 
probabilities are given in Tables 2 and 3. Next, the conditional proba-
bilities between them can be obtained from Tables 10–12. 

Figs. 6, 8, and 10 present the scenarios of three outcome events using 
the Bayesian Network model. Figs. 7, 9, and 11 present the scenarios of 
three outcome events using the ROC-based CIA-ISM. 

A comparison of Figs. 6 and 7 reveals that the coupling relationship 
between events in Fig. 7 is more complicated. In both figures, extreme 
rainfall (IE1) affects the outcome events through cascading relation-
ships. For example, in Fig. 6, extreme rainfall caused damage to the 
metro system and surrounding buildings (DE2), resulting in casualties 
(OE1). However, from the real case situation, the reason for the 
destruction of buildings is the widespread flooding (DE6) in the subway 
station area caused by the persistent rain (DE4). Likewise, extreme 
rainfall hinders the effectiveness of rescue teams, which in turn has an 
impact on casualties (OE1). Finally, the breakdown of the subway 
drainage system (DE13) exacerbated the casualties. But in this case, the 
metro company did not release timely notification of shutdown (DE15), 
which was the most significant cause of casualties. After the rainfall in 
Zhengzhou city reached a peak at 4 pm on July 20, 2021, many water 
inflows occurred on Metro Line 5. The subway was stopped 2 h after the 
rain flooded, and the best stop-loss opportunity was missed. The cross- 
impact relationship in Fig. 6 does not show a cascade path for subway 
outages. In Fig. 7, the failure of each subsystem of the subway system, 
such as the ventilation system (DE14), the drainage system (DE13) and 
the power system (DE12), will affect casualties, which is consistent with 
the actual situation. In this case, the ground transportation system (DE1) 
has a significant impact on casualties, and this cross-impact relationship 
is well demonstrated in Fig. 7. Likewise, persistent rain (DE4) had a 
positive effect on the paralysis of the drainage system (DE13), large- 
scale flooding (DE6), and component damage (DE3), which was 
consistent with the reality. The roles of social assistance (DE8) and 
Medicare (DE9) are not represented in Fig. 6. 

From IE1 to OE2, the complexity of the coupling relationship in 
Figs. 8 and 9 is similar. In Fig. 8, extreme rainfall (IE1) can directly and 
indirectly affect economic losses (OE2). But in the selected case, extreme 
rainfall (IE1) affects the outcome events by affecting the dynamic 
events. In Fig. 8, building damage (DE2) and structural damage (DE3) 

Fig. 5. Digraph for the limit value |Cij| = 3.41– with 30%.  

Table 5 
Forecasted scenario-simulation for IE2 = 0 and IE2 = 1.   

S0 S1 

IE1 0.5000 0.5000 
IE2 0 1 
DE1 0.6351 0.9367 
DE2 0.4228 0.9037 
DE3 0.2575 0.8307 
DE4 0.5096 0.9657 
DE5 0.5837 0.9404 
DE6 0.1787 0.6670 
DE7 0.5000 0.5000 
DE8 0.5000 0.5000 
DE9 0.5000 0.5000 
DE10 0.7119 0.9900 
DE11 0.4992 0.9731 
DE12 0.4270 0.9217 
DE13 0.1405 0.6175 
DE14 0.5945 0.9672 
DE15 0.6831 0.7838 
DE16 0.7066 0.9918 
OE1 0.2092 0.9731 
OE2 0.3791 0.9555 
OE3 0.7732 0.9992  
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caused by extreme rainfall (IE1) increase economic losses (OE2). In the 
case of Zhengzhou metro flooding, timely shutdown of the subway 
(DE15) is the most direct way to reduce economic losses. The failure of 
various subsystems caused by persistent rain (DE4) is also an important 
reason for increased economic losses. The above case can be clearly 
presented in Fig. 9. 

A comparison of Figs. 10 and 11 shows that the coupling relationship 
between events in Fig. 11 is more complicated. Building damage (DE2) 

caused by extreme rainfall (IE1), such as ventilation towers and 
retaining walls will affect social panic directly (OE3). But in this case, 
DE2 affects OE3 indirectly. After passengers are trapped, the rescue 
teams (DE7) and emergency medical care (DE9) can effectively alleviate 
social panic (OE3). In addition, the number of trapped persons (IE2) also 
had a positive effect on public panic. In actual situations, the govern-
ment’s function of guiding public opinion (DE10) is the most critical 
factor in alleviating public panic. Timely announcement of rescue 
progress (DE7), social assistance (DE8), medical security (DE10) and the 
degree of damage to the subway system (DE2, DE3, DE5, DE6, DE12, 
DE13, DE14) can effectively eliminate public panic. Fig. 10 shows, in a 
limited way, the impact of events such as building breakages on social 
panic. On the contrary, Fig. 11 clearly demonstrates the real situation of 
the cascading failure of social panic (OE3). 

4.2. Implications 

According to the metro flooding cases over the years, event sets are 
selected, most of which are related to the causes, system vulnerability, 
and emergency management of metro flooding [6,3,4]. An expert team 
was established by relevant personnel (such as emergency management 
professionals and first-line rescue workers) to evaluate the causal rela-
tionship between the two events, rank the importance of the events, and 
calculate the initial probability of the events using the ROC method. The 
estimation matrix and the initial probability were taken as the input of 
the cross-impact process, and a cross-impact matrix was established. The 

Table 6 
Forecasted scenario-simulation for DE1 = DE5 = DE7 = DE8 = DE9 = DE10 = DE15 = DE16 = 1.   

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 

IE1 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
IE2 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
DE1 1 1 0 0 0 0 0 0 0 0 
DE2 0.8153 0.8454 0.8234 0.2738 0.2738 0.2738 0.7976 0.8412 0.8412 0.9987 
DE3 0.6955 0.7218 0.6874 0.1506 0.1506 0.1506 0.6698 0.7340 0.7340 0.9980 
DE4 0.9245 0.9334 0.9194 0.3375 0.3375 0.3375 0.9135 0.9393 0.9393 0.9999 
DE5 1 0 1 0 0 0 0 0 0 0 
DE6 0.4923 0.5071 0.4725 0.1027 0.1027 0.1027 0.4676 0.5318 0.5318 0.9886 
DE7 0 0 0 1 0 0 0 0 0 1 
DE8 0 0 0 0 1 0 0 0 0 1 
DE9 0 0 0 0 0 1 0 0 0 1 
DE10 0 0 0 0 0 0 1 0 0 1 
DE11 0.9566 0.9995 0.9446 0.5165 0.5165 0.5165 0.9504 0.1178 0.9866 0.9940 
DE12 0.8438 0.9286 0.8247 0.2746 0.2746 0.2746 0.8269 0.8680 0.8680 0.9993 
DE13 0.4383 0.8482 0.4222 0.0788 0.0788 0.0788 0.4133 0.4789 0.4789 0.9878 
DE14 0.9296 0.4575 0.9310 0.4231 0.4231 0.4231 0.9204 0.9424 0.9424 0.9998 
DE15 0 0 0 0 0 0 0 1 0 1 
DE16 0 0 0 0 0 0 0 0 1 1 
OE1 0.9817 0.9498 0.8917 0.2352 0.2352 0.2352 0.7470 0.1985 0.4403 0.0187 
OE2 0.8820 0.8440 0.8820 0.3020 0.3020 0.3020 0.7324 0.4089 0.5638 0.2952 
OE3 0.9975 0.9982 0.9975 0.7595 0.7595 0.7595 0.4049 0.9005 0.9587 0.3547  

Table 7 
OE1—Casualty (ordered influences table).  

Events Name |Cij| 

DE15 The metro company releases a timely notification of the shutdown. 4.85 
IE2 Metro flooding occurs during rush hours. 3.63 
DE4 Persistent rain. 3.10 
DE13 Surface and underground drainage systems are broken. 2.97 
DE6 Heavy rains cause widespread flooding in the area. 2.86 
DE1 The traffic system is paralyzed. 2.76 
DE11 The victims have a strong ability to help themselves. 2.67 
DE14 Metro ventilation system failure. 2.59 
DE5 Poor communication or interruption. 2.51 
DE12 The electricity supplies are disrupted. 2.37 
DE3 Failure of component or structure. 2.31 
DE2 Destruction of a building, such as a rupture, fall, and collapse. 2.25 
DE16 Metros are equipped with first aid equipment. 2.19 
DE10 The government guided public opinion and defused public 

discontent effectively. 
2.14  

Table 8 
OE2—Economic losses (ordered influence table).  

Events Name |Cij| 

DE4 The rain has been continuous. 5.48 
DE2 Destruction of a building, such as a rupture, fall, and collapse. 4.12 
DE15 The metro company issued a timely notice of the shutdown. 3.44 
DE13 Surface and underground drainage systems are broken. 3.28 
DE6 Heavy rains caused widespread flooding in the area. 3.13 
DE1 The transport system was paralyzed, hampering rescue efforts. 3.00 
DE3 Failure of component or structure. 2.88 
DE14 Metro ventilation system failure. 2.77 
DE5 Poor communication or interruption. 2.67 
DE12 The electricity supply was disrupted. 2.48 
IE2 Metro flooding occurs during rush hours. 2.39 
DE11 The trapped people have a strong ability to help themselves. 2.31 
DE16 Metro cars are equipped with first aid equipment. 2.24 
DE10 The government promptly guided public opinion. 2.16  

Table 9 
OE3—Social panic (ordered influence table).  

Events Name |Cij| 

DE10 The government promptly guided public opinion. 8.21 
DE4 The rain has been continuous. 3.67 
DE15 The metro company issued a timely notice of the shutdown. 3.06 
DE1 The transport system was paralyzed, hampering rescue efforts. 2.91 
DE6 Heavy rains caused widespread flooding in the area. 2.78 
DE13 Surface and underground drainage systems are broken. 2.67 
IE2 Metro flooding occurs during rush hours. 2.56 
DE11 The trapped people have a strong ability to help themselves. 2.46 
DE14 Metro ventilation system failure. 2.37 
DE5 Poor communication or interruption. 2.20 
DE12 The electricity supply was disrupted. 2.13 
DE3 Failure of component or structure. 2.06 
DE2 Destruction of a building, such as a rupture, fall, and collapse. 1.99 
DE16 Metro cars are equipped with first aid equipment. 1.92  

Z. Yang et al.                                                                                                                                                                                                                                    



Reliability Engineering and System Safety 229 (2023) 108888

9

top 10 and 30% of the most significant impacts were extracted, and the 
causality of events was expressed structurally based on the interpreta-
tive structure model. The ROC-based CIA-ISM is adopted to effectively 
evaluate the nodes of system vulnerability of metro flooding through the 
scenario inference of the “7.20” metro flooding disaster in Zhengzhou. 
The model can directly represent the evolution scenarios of cascading 
failure and select the nodes of system vulnerability to assess their 
reliability. 

In this article, timely notification of the shutdown has the most 
complex coupling relationships in the cascading failure process in metro 
systems. The efficiency of several critical emergency measures was 
assessed, and it was found that the events with the greatest influence on 
the three outcome events (OE1, OE2, OE3) are DE15, DE4, and DE10, 
based on the ranking of cross-impact value. For emergency events, DE15 
and DE10 have a significant effect on the outcome events. Through 
simulation, the probability of casualties, property losses, and social 
panic decrease by 96.3%, 58.58%, and 64.28%, respectively, where 
main emergency measures are in effect. Furthermore, the ROC-based 
CIA-ISM model is compared with the other scenario-based approach to 

verify its superiority in cascading failure analysis. 
Through the above analysis, some countermeasures and suggestions 

can be put forward. Metro flooding disaster emergency preparation is of 

Table 10 
Conditional probability of OE1.  

Events States8 Probability Events States Probability Events States Probability Events States Probability 

IE1 01 0%100% DE4 01 37%63% DE9 01 38%62% DE14 01 99%1% 
IE2 01 50%50% DE5 01 99%1% DE10 01 45%55% DE15 01 68%32% 
DE1 01 20%80% DE6 01 8%92% DE11 01 63%37% DE16 01 8%92% 
DE2 01 32%68% DE7 01 5%95% DE12 01 99%1% OE1 01 34%66% 
DE3 01 37%63% DE8 01 99%1% DE13 01 5%95%     

8 0 represents none occur; 1 represents occur. 

Table 11 
Conditional probability of OE2.  

Events States Probability Events States Probability Events States Probability Events States Probability 
IE1 01 0%100% DE4 01 38%62% DE9 01 38%62% DE14 01 99%1% 
IE2 01 50%50% DE5 01 99%1% DE10 01 46%54% DE15 01 69%31% 
DE1 01 24%76% DE6 01 8%92% DE11 01 63%37% DE16 01 8%92% 
DE2 01 31%69% DE7 01 5%95% DE12 01 99%1% OE2 01 8%92% 
DE3 01 37%63% DE8 01 99%1% DE13 01 64%36%     

Table 12 
Conditional probability of OE3.  

Events States Probability Events States Probability Events States Probability Events States Probability 
IE1 01 0%100% DE4 01 43%57% DE9 01 45%55% DE14 01 92%8% 
IE2 01 50%50% DE5 01 92%8% DE10 01 47%53% DE15 01 71%29% 
DE1 01 31%69% DE6 01 92%8% DE11 01 59%41% DE16 01 92%8% 
DE2 01 41%59% DE7 01 20%80% DE12 01 92%8% OE3 01 60%40% 
DE3 01 44%56% DE8 01 92%8% DE13 01 20%80%     

Fig. 6. BN network of OE1.  

Fig. 7. ROC-based CIA-ISM of OE1.  
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great significance to guide on-site disposal before and after disaster, and 
all sectors of society should properly deal with metro flooding disasters 
to reduce losses. After heavy rain, when the precipitation reaches the 
warning line, the metro company should issue a timely notification of 
shutdown so as to reduce casualties to the greatest extent. Ensuring 
smooth traffic system flow and efficient rescue by a professional rescue 
team is also a key factor in reducing casualties. The government should 
give priority to the guidance of public opinion. Therefore, it is necessary 
to disclose the disaster information timely. We propose to improve the 
emergency capacity to withstand metro flooding through explicit 
legislation in the new urban plan. In Scenario 9 of Table 6, casualty, 
property loss, and social panic are minimized where all emergency 
management measures are in effect, indicating that the measures must 
be supplemented with each other. Regularly checking the underground 
drainage network before the rain season could help to ensure its proper 
operation during torrential floods [6]. We suggest developing a metro 
flood monitoring and warning system and promptly delivering risk in-
formation to citizens through communication companies [6]. 

Moreover, hard adaptation strategies play an important role in flood 
control [48]. Compared to emergency measures, hard adaptation ex-
hibits the advantages of high benefit and low cost in loss reduction [49, 
50]. Accordingly, we propose to raise exits to stop surface water intru-
sion into metro stations [51]. It is necessary to install water-stop plates 
at the low-lying stations [50,51]. In addition, the height of ventilation 
towers should be raised, and stop-flood boards are required if the vents 
are connected to the ground. These structural measures are recom-
mended to prevent urban flooding from rushing into metro stations. 

4.3. Limitations 

There are some drawbacks in this study. For one thing, the ROC- 
based CIA-ISM approach effectively deconstructs the cascading failure 
process in metro systems under extreme rainfall conditions. However, 

Fig. 8. BN network of OE2.  

Fig. 9. ROC-based CIA-ISM of OE2.  

Fig. 10. BN network of OE3.  

Fig. 11. ROC-based CIA-ISM of OE3.  
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the numerical ordering of the event’s shortcomings is due to the sub-
jective assessment. Random Forests (RF) is a powerful statistical clas-
sification used to rank the events based on their Gini index [52]. Thus, 
future research will modify the events ranking process based on the RF. 

For another, the structural events, such as the exit height of metro 
stations and the height of ventilation towers, are not involved in the risk 
indicator system due to data acquisition limitations. However, these 
events also affected metro systems’ cascading failure under extreme 
rainfall conditions [6]. Therefore, future research will employ text 
mining to build the event set. 

5. Conclusions 

Based on the analysis of the “7.20” metro flooding in Zhengzhou city, 
the events related to metro flooding are selected to form an event set. 
Most events relate to metro flooding, heavy rain secondary disaster, and 
system vulnerability. The initial probability of the event set can be ob-
tained by the experts’ rank of ROC and probability elicitation. Experts in 
emergency management were invited to form a panel with first re-
sponders to provide consistent estimates of the causal relationship be-
tween the two events. The estimated results are input to the cross-impact 
process in matrix form. A cross-impact matrix was established based on 
the CIA, and some of the most significant influence was extracted (top 10 
and 30% were extracted in this paper). The extracted influence values 
are expressed structurally through the ISM. The scenario deduction of 
the “7.20” metro flooding disaster in Zhengzhou shows that the ROC- 
based CIA-ISM can effectively deconstruct the cascading failure mode 
of metro flooding and evaluate the vulnerability of system nodes. After 
the above analysis and research, this paper draws the following 
conclusions.  

(1) The initial probability of events is obtained in a probabilistic 
elicitation way by ranking the ROC method so that experts are 
only subjected to minimal cognitive bias and have strong 
robustness. In addition, the ROC method can reduce the subjec-
tive influence on the initial probability assignment of events, 
effectively mitigate the impact of external events on the event set, 
and enhance the comprehensiveness of events.  

(2) Based on the scenario inference process, the ROC-based CIA-ISM 
can directly reflect the coupling relationship between events, the 
propagation path, and the relationship between different levels, 
realizing the highly structured expression of the disaster evolu-
tion process to block the disaster transmission chain quickly and 
effectively. By evaluating the vulnerability nodes related to metro 
flooding accidents, the reliability of various emergency man-
agement measures can be identified to reduce accident losses and 
help decision-makers propose more accurate risk control 
strategies.  

(3) Taking the “7.20” metro flooding disaster in Zhengzhou as a case 
study, the cascading failure model of metro flooding disasters can 
effectively evolve the disaster process and identify the coupling 
relationship between key vulnerability nodes. The model’s 
effectiveness is verified by scenario deduction and case simula-
tion, and the prediction scenario is consistent with the actual 
situation. According to the natural disaster situation and scenario 
simulation results, it is helpful to put forward specific measures 
and provide reference for system vulnerability assessment and 
emergency management. 

For future research, the application of causal inference is needed for 
cascading failure analysis in complex systems. Instead of just scenario 
inference, the cascading process will be deconstructed by applying the 
three levels of causal inference, which are association, intervention, and 
counterfactuals. Moreover, the decoupling research of cascading failure 
mode in complex systems will be done in the future studies. Finally, it is 
worth noting that the causal inference enables a better evaluation of 

cascading mode and decoupling process. 
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[41] Bañuls VA, Turoff M, Hiltz SR. Collaborative scenario modeling in emergency 
management through cross-impact. Technol Forecast Soc Change 2013;80(9): 
1756–74. 

[42] Stergiopoulos G, Kotzanikolaou P, Theocharidou M, Gritzalis D. Risk mitigation 
strategies for critical infrastructures based on graph centrality analysis. Int J Crit 
Infrastruct Prot 2015;10:34–44. 

[43] Zhang Y, Weng WG, Huang ZL. A scenario-based model for earthquake emergency 
management effectiveness evaluation. Technol Forecast Soc Change 2018;128: 
197–207. 

[44] Fu S, Yu Y, Chen J, Xi Y, Zhang M. A framework for quantitative analysis of the 
causation of grounding accidents in arctic shipping. Reliab Eng Syst Saf 2022: 
108706. 

[45] Meng X, Chen G, Zhu J, Li T. Application of integrated STAMP-BN in safety analysis 
of subsea blowout preventer. Ocean Eng 2022;258:111740. 

[46] Arabi S, Eshtehardian E, Shafiei I. Using Bayesian networks for selecting risk- 
response strategies in construction projects. J Constr Eng Manag 2022;148(8): 
04022067. 

[47] Zhou T, Han T, Droguett EL. Towards trustworthy machine fault diagnosis: a 
probabilistic Bayesian deep learning framework. Reliab Eng Syst Saf 2022;224: 
108525. 

[48] Du S, Scussolini P, Ward PJ, Zhang M, Wen J, Wang L, Aerts JC. Hard or soft flood 
adaptation? Advantages of a hybrid strategy for Shanghai. Glob Environ Chang 
2020;61:102037. 

[49] Yin J, Ye M, Yin Z, Xu S. A review of advances in urban flood risk analysis over 
China. Stoch Environ Res Risk Assess 2015;29(3):1063–70. 

[50] Wang G, Liu Y, Hu Z, Zhang G, Liu J, Lyu Y, Liu L. Flood risk assessment of subway 
systems in metropolitan areas under land subsidence scenario: a case study of 
Beijing. Remote Sens 2021;13(4):637. 

[51] Aoki Y, Yoshizawa A, Taminato T. Anti-inundation measures for underground 
stations of Tokyo Metro. Procedia Eng 2016;165:2–10. 

[52] Cutler DR, Edwards Jr TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ. 
Random forests for classification in ecology. Ecology 2007;88(11):2783–92.  

Zhen Yang is a professor at Xi ’an University of Architecture 
and Technology. His research interestsinclude safety big data 
and risk management, and AI-assisted safety system engineer-
ing. E-mail:yangzhen@xauat.edu.cn 

Z. Yang et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0025
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0025
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0025
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0026
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0026
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0026
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0027
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0027
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0027
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0027
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0028
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0028
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0028
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0029
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0029
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0029
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0030
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0030
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0031
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0031
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0031
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0032
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0032
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0032
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0033
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0033
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0033
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0035
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0035
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0035
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0036
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0036
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0037
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0037
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0034
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0034
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0038
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0038
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0039
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0040
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0040
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0040
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0041
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0041
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0041
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0042
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0042
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0042
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0043
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0043
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0043
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0044
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0044
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0044
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0045
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0045
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0046
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0046
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0046
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0047
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0047
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0047
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0048
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0048
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0048
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0049
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0049
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0050
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0050
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0050
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0051
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0051
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0052
http://refhub.elsevier.com/S0951-8320(22)00505-1/sbref0052

	Scenario inference model of urban metro system cascading failure under extreme rainfall conditions
	1 Introduction
	2 Methodology
	2.1 Rank-order centroid method
	2.2 CIA-ISM model

	3 Test case
	3.1 Create the accident event set
	3.2 Scenario analysis

	4 Analysis and results
	4.1 Comparison with other scenario-based methods
	4.2 Implications
	4.3 Limitations

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	References


