原始矩阵(直接影响矩阵)为
$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{9 \times9}} &A &B &C &D &E &F &G &H &I\\ \hline A &0 &3 &1 &5 &8 &8 &3 &5 &0\\ \hline B &5 &0 &6 &4 &3 &2 &5 &8 &6\\ \hline C &4 &6 &0 &7 &1 &2 &9 &3 &1\\ \hline D &3 &6 &9 &0 &8 &9 &11 &5 &3\\ \hline E &8 &9 &2 &11 &0 &10 &9 &2 &5\\ \hline F &5 &8 &0 &10 &8 &0 &9 &4 &6\\ \hline G &0 &11 &6 &5 &9 &10 &0 &9 &0\\ \hline H &9 &10 &5 &3 &5 &3 &7 &0 &6\\ \hline I &5 &7 &1 &8 &10 &6 &5 &3 &0\\ \hline \end{array} $$
规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$
- $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{9 \times9}} &A &B &C &D &E &F &G &H &I\\ \hline A &0 &0.039 &0.013 &0.065 &0.104 &0.104 &0.039 &0.065 &0\\ \hline B &0.065 &0 &0.078 &0.052 &0.039 &0.026 &0.065 &0.104 &0.078\\ \hline C &0.052 &0.078 &0 &0.091 &0.013 &0.026 &0.118 &0.039 &0.013\\ \hline D &0.039 &0.078 &0.118 &0 &0.104 &0.118 &0.144 &0.065 &0.039\\ \hline E &0.104 &0.118 &0.026 &0.144 &0 &0.131 &0.118 &0.026 &0.065\\ \hline F &0.065 &0.104 &0 &0.131 &0.104 &0 &0.118 &0.052 &0.078\\ \hline G &0 &0.144 &0.078 &0.065 &0.118 &0.131 &0 &0.118 &0\\ \hline H &0.118 &0.131 &0.065 &0.039 &0.065 &0.039 &0.091 &0 &0.078\\ \hline I &0.065 &0.091 &0.013 &0.104 &0.131 &0.078 &0.065 &0.039 &0\\ \hline \end{array} $$
综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{9 \times9}} &A &B &C &D &E &F &G &H &I\\ \hline A &0.07 &0.143 &0.069 &0.155 &0.186 &0.188 &0.141 &0.131 &0.055\\ \hline B &0.137 &0.115 &0.136 &0.146 &0.135 &0.121 &0.17 &0.175 &0.127\\ \hline C &0.108 &0.173 &0.061 &0.166 &0.1 &0.111 &0.203 &0.112 &0.058\\ \hline D &0.138 &0.237 &0.196 &0.142 &0.231 &0.243 &0.287 &0.173 &0.113\\ \hline E &0.198 &0.271 &0.118 &0.275 &0.149 &0.265 &0.268 &0.145 &0.141\\ \hline F &0.157 &0.249 &0.089 &0.251 &0.231 &0.136 &0.254 &0.157 &0.147\\ \hline G &0.104 &0.283 &0.157 &0.192 &0.229 &0.239 &0.148 &0.212 &0.082\\ \hline H &0.196 &0.254 &0.135 &0.155 &0.179 &0.154 &0.211 &0.098 &0.137\\ \hline I &0.151 &0.222 &0.089 &0.219 &0.24 &0.195 &0.195 &0.132 &0.068\\ \hline \end{array} $$