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When a ranking of some objects (chemicals, geographical sites, river sections, etc.) by a multicriteria analysis
is of concern, then it is often difficult to find a common scale among the criteria, and therefore even the
simple sorting process is performed by applying additional constraints, just to get a ranking index. However
such additional constraints, often arising from normative considerations, are controversially discussed. The
theory of partially ordered sets and its graphical representation (Hasse diagrams) does not need such additional
information just to sort the objects. Here, the approach of using partially ordered sets is described by applying
it to a battery of tests, developed by Dutka et al. In our analysis we found the following: (1) The dimension
analysis of partially ordered sets suggests that, at least in the case of the 55 analyzed samples and the
evaluation by the scores, developed by Dutka et al., there is a considerable redundancy with respect to
ranking. The visualization of the sediment sites can be performed within a two-dimensional grid. (2)
Information, obtained from the structure of the Hasse diagram: For example six classes of sediment sites
have high priority, and each class exhibits a different pattern of results. (3) Loss of information, when an
aggregation of test results is used in order to guarantee complete comparability among all objects. A relation
between information drawn from the graphic and the uncertainty of ranking after using an aggregation is
given. (4) The sensitivity analysis identifies one test as most important, namely the test for Fecal Coliforms/
Escherichia coli. This means that the ranking of samples is heavily influenced by the results of this specific
test.

1. INTRODUCTION

Hasse diagrams have been used to rank chemicals accord-
ing to environmental hazards (see ref 2 for a recent review).
At the basis of the Hasse diagram technique (HDT) is the
assumption that we can perform a ranking while avoiding
the use of an ordering index. Hasse diagrams not only present
information on the ranking but, most important, also show
whether the criteria, characterizing the objects, lead to
ambiguities in the ranking. For example, an object might be
ranked higher according to one criterion but lower according
to another. These two objects are not ordered because their
data are “contradictory”. This ambiguity is hidden when we
use an index for ranking, i.e., if we aggregate the results of
the battery of tests to only one quantity (an index function)
but is immediately evident by the presence or absence of
lines in a Hasse diagram. [Sometimes we also write “test
battery” or simply “battery”.] Therefore, the HDT is very
appropriate for a comparative evaluation of polluted or
degraded sites, when a multicriterial assessment by a battery
of tests is in mind. In this paper however, the ecotoxicological

test battery and its results are not of primary concern (a
detailed discussion can be found in refs 1 and 3), but we
investigate new methods to extract further information from
Hasse diagrams. These are as follows: (1) the dimension of
Hasse diagrams with respect to visualization of the ranking
results. (2) Sets of samples, with specific test reactions, i.e.,
(2a) priority sites and (2b) sites, having a specific pattern of
test results in common. We call this kind of result from Hasse
diagrams “structural information”. (3) The loss of informa-
tion, which appears, when an aggregation of test results is
used, and (4) the so-called matrixW, that quantifies the
influence of criteria on ranking (sensitivity analysis).

2. METHODS

The so-called Hasse diagram technique is explained in
several publications (see for example ref 3). For the sake of
convenience of the reader we briefly repeat some facts.

Criteria include both quantitative and qualitative proper-
ties.

An attribute is a numerical quantity logically related to a
criterion. We denote these attributes as q1, q2, ..., qn. It is
convenient to denote the full attribute set asA. A family of
L:) 2n-1 attribute sets is considered in our analysis, namely
the power set of A without the empty set. Each subset of
attributes is denoted byAi, with Ai ⊆ A, and is used to
perform a sensitivity analysis (see later).
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The concept “tuple” generalizes from the following: pair
of data, triple of data. We avoid the concept “vector”, because
the properties of a linear space are not needed.

Data are the numerical values corresponding to each
criterion by which a given object is characterized.

An object is the item of interest. Each object, x, is
characterized by a tuple of data (q(x)) (q1(x), q2(x),...,
qn(x))). The set ofm objects is calledE. We also write the
following: an object x is anelementof a set. Objects are
ranked graphically by Hasse diagrams, applying an order
relation (see below). The cardinality operator “card” acts on
finite sets, and the result is the number of elements of sets.
For example, when the object setE containsm objects, then
cardE ) m.

Order relation : Two objects x,y∈ E are characterized
by the tuples (q1(x), q2(x),...,qn(x) and (q1(y),q2(y),...,qn(y)).
We say x and y arecomparable, if qi(x) e qi(y) or qi(y) e
qi(x), for all i ) 1,2,..,n. If qi(x) e qi(y) for all i, then we
write x e y. If qi(x) e qi(y) not for all i, i.e., if there exists
at least one i* with qi* (x)>qi* (y) and one i** with qi** (x) <
qi** (y), then the two objects x,y areincomparable(with
respect to the considered set of attributes). In that case we
write x || y. The demand “for all” to set up an order relation
we call thegenerality principle. Sets equipped with an order
relation are calledpartially orderedsets(posets). Atotal
order is a set, whose order relation leads to complete
comparability, i.e., each object is comparable with each other.

Equivalent objectsin Hasse diagrams:4,5 Different objects
that have the same data with respect to a given set of
attributes. They are elements of an equivalence class with
the equivalence relation,R, “equality of the characterizing
tuples”. Often it is useful to study the partially ordered set
of equivalence classes (E/R, the “quotient set“ underR)
instead ofE and to select one object as arepresentatiVe of
its equivalence class.

A caseis a shorthand notation for an analysis by Hasse
diagrams ofm objects and with a defined attribute setAi.
Thus, we call a given set of attributes used for a comparative
evaluation aninformation basis, (abbreviation: IB), to
express the importance of the selection of the attributes for
rankings: By the order relation the setIB induces a poset
and a Hasse diagram, respectively, as its visualization.
Therefore we write specifically (E,IB). Sometimes we also
write (E,A) or (E,Ai) if specific attribute combinations must
be indicated.

An aggregation is a method to assign to a vectorial
quantity a scalar: The tuple (q1,q2,..,qn) ∈ IRn (n-dimensional
space of attributes) is mapped onto a scalarΓ ∈ IR (a one-
dimensional space). In evaluation studies this map often is
realized by weighted sums, i.e.

Generally an aggregation may be formulated as a monotonic,
differentiable function f of q1,q2,..,qn.

Transitivity : Order relations have to fulfill certain
mathematical axioms. One of them is the transitivity.
Transitivity expresses that for a,b,c∈ E/R the relation ae
b, b e c implies ae c.

Hasse diagramsvisualize the order relations of posets in
the plane. Lines due to transitivity are omitted. Hasse
diagrams are oriented acyclic graphs (digraphs); instead of

drawing arrows, indicating that object a is “greater” than
object b, the object a is located above b in the plane. As
ordinary graphs Hasse diagrams are triangle free. A digraph
consists of a setE/R of objects (exactly: classes) drawn as
small circles or small rectangles. A line in the Hasse diagram
indicates that the two objects connected by that line are
“comparable” with each other.

Crossing of lines:When a Hasse diagram is drawn in the
plane and straight lines connecting comparable objects cross
another although there is no element of the poset at
intersection point, a crossing of lines still appears. Note that
some experience is needed to minimize the number of such
crossings. In general cases not all crossings can be avoided.

Maximal elements, “max” ∈ E/R: There is no x∈ E/R
with x g max.

Minimal elements, “min” ∈ E/R: There is no x∈ E/R
with x e min.

Isolated elements, “iso” ∈ E/R: elements which are
maximal and minimal elements at the same time.

If there is only one maximal/minimal element, then this
is calledgreatest/leastelement.

Key elements:Substructures within a Hasse diagram, i.e.,
relations among objects as well as the importance of criteria
in ranking are investigated with the help of key elements.
Any object of the poset (E,IB) can be chosen as a starting
point to begin the analysis and is then called a “key element”.
For convenience, all chosen key elements form a setK, a
subset ofE. Note that for this kind of analysis we refer toE
not toE/R. The reason is that we aim to study the effect of
different attributes. When different cases are examined, then
different quotient sets would arise. We want to avoid
cumbersome notations.

Thesuccessor setof a key element k∈ E is the set ofall
objects y∈ E for which y * k and y e k. The set of all
successors of key element k is denoted asG(k). [Note the
similar concept of “down-sets” and order ideals generated
by some elements in ref 6). We also write “G(k) is generated
by object k.” G(k) ∪ {k} is a principal order ideal.] The
properties of the successor setG(k) and its relation with
successor sets of other key elements are first used to analyze
the structure of a Hasse diagram, but later they will be used
to perform the sensitivity analysis.

Relations between elements of posets:To investigate the
global structure of the relations between any two elements
of the posets, we perform this analysis mathematically. This
structural relation might be hidden within the geometrical
representation of the Hasse diagram. Often one is interested
in the number of objects which have common properties
compared to two key elements. Therefore, we introduce the
symmetrical matrixD, whose entries are calculated from the
cardinalities of all intersections of pairs of successor sets.

[A generalization may be D(K):) card [∩ G(k)], k ∈ K;
however, for practical purposes the binary relation (eq 2)
seems to be sufficient.] The values of Dij (note that a crude
upper bound is cardE -1 and cardE/R -1, respectively)
are mostly useful to identify two objects which have either

Dij:) card [G(i) ∩ G(j)] i,j ∈ E (2)

Γ ) Σgi*qi (i)1,...,n), gi g 0: weights (1)
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many common or only very few common successors.
Another and more useful concept is that of the number of
“local” contradictions of a class x∈ E/R: U(x), which is
the number of classes y∈ E/R, with y*x, y||x:

Note that U(x) has an upper bound, namely cardE/R -1.

3. RESULTS

3.1. Sediment Samples of Lake Ontario as Object Set
and the Tests of the Battery as Information Base.A
battery of tests developed by Dutka et al.1 to test the
sediments of near-shore sites of Lake Ontario (Canadian part)
is used to exemplify the definitions and some results of HDT.
In Lake Ontario 55 sediment samples were tested, thus, the
setE contains 55 objects. Dutka et al. classified their results
and used discrete scores instead of the measured (raw) data.
For our analysis we took their classification. Therefore,
instead of the symbol qi for the ith attribute we use si for the
score of the ith test of the battery. Five tests are combined
to form a battery: (1) Fecal Coliforms “FC”, [FC is an
indicator designed to control the health state of the sedi-
ments.]. (2) Coprostanol “CP”, (3) Cholesterol “CH” [CP
and CH are indicators of loadings by fecals], (4) Microtox
tests “MT”, and (5) Genotoxicity tests “GT” [MT and GT
describe some kind of acute toxicity and the potential for
cancerogenicity, respectively (Table 1).].

By scoring the data many equivalence classes (in fact 20)
arise. It is convenient to refer only to these classes by
specifying a representative for each class, i.e., besides the
sensitivity study we apply the concept of quotient sets. With
the specific equivalence relationR5 meaning equality in all
five scores sFC, sCP, sCH, sMT, and sGT, the following sediment
samples are equivalent (Table 2), and the quotient set is
denoted asE/R5.

The information base of the battery of tests isIB: ) {sFC,
sCP, sCH, sMT, sGT}. The partial ordering of the samples arises
as explained in section 2. The visualization of the partial
order by a Hasse diagram is shown in Figure 1.

3.2. Dimension Analysis (Task 1).Posets can be char-
acterized by several numbers. One of these is the dimension
of a poset,dim (E/R,IB) which is the minimum number of
total orders needed to represent the original poset. Instead
of explaining, what “represent” means, another more re-
stricted definition is given, which is operationally tractable:
If a Hasse diagram (eventually fictitiously supplied by a
greatest and least element) can be drawn in the plane without
any crossings of lines, then it can be embedded into a two-
dimensional grid8 and then dim(E/R, IB) ) 2. Once the
dimension d of a poset is found with d< card IB, then
corresponding many new latent ordering variables l1, l2,...,
ld can be used to form the same Hasse diagrams as found by
the original attributes. I.e. the same ranking must be possible
by a lower number of latent ordering variables and a
redundancy within the battery of original attributes is
possible. However, the numerical relation between the
original attributes and the latent ordering variables may be
very difficult to be found and, if, then hard to interpret (as
is often the case in principle component analysis too).

Here, the poset (E/R, {sFC, sCP, sCH, sMT, sGT}) could be
drawn without any crossings of lines; therefore, the dimen-
sion of this poset is two (see Figure 1). Correspondingly,
the poset (E/R5,IB) can also be visualized by a two-
dimensional grid as is shown in Figure 2.

Both visualizations have their own advantages:
Structures within a Hasse diagram, for example successor

sets or sets of samples separated from others by incompa-
rabilities, can be more easily discovered by a representation
like that of Figure 1.

In multivariate statistics the reduction of data is typically
performed by principal components analysis or by multidi-
mensional scaling. These methods preserve the distance
between objects optimally. When order relations are the
essential aspect to be preserved in the data analysis, the
optimal result is a visualization of the sediment sites within
a two-dimensional grid.

Some further remarks with respect to the representation
within a two-dimensional grid should be given:

• Some scores of the test battery are additionally shown.
From them the values of the scores of other objects can
be estimated or exactly calculated. For example, for class
17, FC must have the value 3, because the lower object 92
and the higher object 95 have sFC ) 3. The value of CP
must be 0 because sCP(32) ) 0, which is the lowest
value. Similarly sCH(17) ) 0 and sGT(17) ) 0, whereas for
sMT(17) only the interval 4e sMT(17) e 8 can be pre-
dicted from the knowledge of the neighbors in the Hasse
diagram.

• Most important: The grid can be thought of as being a
coordinate system, with one axis of a latent order variable
l1 and another by l2, according to dim(E/R5,IB) ) 2. By these
two latent ordering variables, each class∈ E/R5 can be
characterized by a pair, which represents correctly the order
relations (important for ranking) but which is clearly not
unique with respect to a numerical representation. Table 3
gives some examples.

• The interpretation of the latent variables l1 and l2 is
supported by checking the configurations within the two-
dimensional grid in terms of its a priori content (variables
FC, CP, CH, MT, GT). A clear correlation can be detected
between FC and the latent variable l1 and also between GT

Table 1. Scores of Five Test Battery Results for Representatives of
the Equivalence Classes ofE/R

identifier FC CP CH MT GT

1 2 0 0 4 0
2 1 0 0 2 0
3 2 0 0 2 0
4 3 0 0 0 0
5 3 3 2 0 0
7 2 0 0 8 0
9 1 0 0 6 2

11 1 0 0 0 0
12 3 0 0 2 0
14 1 0 0 8 0
17 3 0 0 6 0
18 1 0 0 2 4
23 1 0 0 0 4
25 4 0 0 0 0
27 5 0 0 0 0
31 4 5 4 0 0
32 3 0 0 8 0
91 2 0 0 0 0
92 3 0 0 4 0
95 3 5 2 6 0

U(x) ) [cardE′(x)] with E′(x) )
{y ∈ E/R: y * x, y||x} (3)
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and the latent variable l2. Sometimes these variables FC and
GT with primary meaning are calledpolar items. The other
variables accentuate the possibility of discrimination in a
nonlinear manner. Therefore, in a qualitative sense, the
ranking of the sediment sites of the Lake Ontario seems to
be mainly determined by a hygienic and an ecotoxicological
component.

• Some objects could be embedded into the grid in
alternative ways. However, the order theoretical information,
namely the comparabilities and incomparabilities are main-
tained. (This can be easily proved by verifying that the Hasse

diagram induced by five attributes is isomorphic to that,
induced by the two latent variables.)

• In principle, a representation in a two-dimensional plane
can also be found applying statistical software, especially
the module POSAC (Partially Ordered Scalogram Analysis
with Coordinates, SYSTAT 9).7 If the dimension of a poset
is two, POSAC may find a two-dimensional representation
with the same partial ordering structure as the original data.
In general POSAC finds the optimal solution in terms of
the “coefficient of correct representation”. This parameter
specifies the proportion of pairs, whose comparability and
incomparability relations are correctly represented. A new
version of POSAC allows processing in higher dimensions,
but an exact embedding in order theoretical dimension
analysis seems to be difficult.

3.2. Structural Information (Task 2). (a) Priority ele-
ments are the maximal and isolated elements, which can be
easily found by inspection of Figure 1. We find six
equivalence classes of samples of high priority. The repre-
sentatives are as follows: sample 27, 31, 95, 32, 9, 18. Each
of these maximal elements represents a class corresponding
to R5. For example the object 27 represents the class{27,
33, 46, 47}. For the other nontrivial classes see Table 2.

The object 27 is worse than site 25, and site 25 is worse
than site 4. These statements can be repeated until the
relatively best sample, 11, is reached. Sample 31 is also
considered as a priority element; however, there are other
reasons as for example for sample 27. Here the first three
tests indicate a high activity. If we had a common scale for
FC and for the other two tests CP and CH, then sample 27
might be not as hazardous considered as sample 31. However
the difference of 1 point (in the score of 27 in comparison
to that of 31)may represent a critical status.

(b) Some successor sets of maximal elements are of
specific interest, namely those which have zeros within their
tuple. Because of the generality principle all successors have
to have at least the same zeros. Therefore subsets ofE/R
can be found, which can be characterized bytemplates: A
tuple of some key element “k” is written as a combination
of the signs “*” and “0”. The sign “0” indicates that the
lowest and the sign “*” that any other value of a test is

Table 2. Equivalence Classes and Their Battery of Tests Patterna

equivalence class FC CP CH MT GT remark

{2,8} 1 0 0 2 0
{4,6,10,13,19,21,22,29,30,48,94} 3 0 0 0 0
{11,16,40,41,42,43,44,45} 1 0 0 0 0 the best class (i.e.: the least element)
{15,92} 3 0 0 4 0
{17,35} 3 0 0 6 0
{20,24,26,28,34,37,39,49,50,51,91,93} 2 0 0 0 0
{23,60} 1 0 0 0 4
{27,33,46,47} 5 0 0 0 0 one of the priority classes

a Number of sites in bold letters are later used as representatives for the whole equivalence class.

Figure 1. The comparative evaluation of samples from Lake
Ontario, as generated by the EDP-program WHASSE. Note, that
the quotient set and representatives (i.e. objects belonging to an
equivalence class and representing all others of that class) are
shown. The partitioning of E/R5 into subsets, horizontal arranged,
the level, is useful for referring to the Hasse diagram and therefore
included, albeit we actually do not use them.

Figure 2. Visualization of the ranking result of the sediment
samples of Lake Ontario after dimension analysis.

Table 3. Order Theoretical Classification of Representatives Found
in Figure 2

representative l1 l2 remark

11 0 0 least element
91 4 0
3 4 2

17 5 5
9 2 10 maximal element
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actually present. Then

The evaluation of eq 4 is very simple, if qi are discrete
variables. With the help of the concepts of templates a
partitioning of the setE/R can be performed. Begin with
the maximal elements, k. Select that key element which has
the largest number of “0’s” in its template and gather all
successors. Then the key element together with its successors
form the first subset. Continue this procedure till the setE/R
is exhausted. Some care is needed, when there is more than
one key element with the same number of “0’s”. If the
template is the same, then unify the subsets; if this is not
the case then (a) ifG(k) ∩ G(k′) ⊆ G(k*), and the number
of zeros in the template of k* is greater than that of k (and
by supposition of k′), then the elements ofG(k) ∩ G(k′) ⊆
E/R are already assigned to the class of the pattern of k*
and (b) ifG(k) ∩ G(k′) ⊂e G(k*), then the elements ofG(k)
∩ G(k′) form a new template and consequently a new class
of a specific pattern.

By application of eq 4 in the case of our battery of tests
we arrive at the following result: First to gain familiarity
with the concept of templates we discuss an example: A
maximal element with zeros in their scores is to be selected.
For example the key element 32 may be considered as
represented by the template (*,0,0,*,0). Now all successors
of 32 must have at least the same pattern of zeros as object
32. The other tests may have decreased values, including
zero. Let us now consider the intersection of G(32) and
G(31). Their templates are as follows: (*,0,0,*,0) and
(*,*,*,0,0). Then the template for all objects ofG(32)∩G(31)
must have the form (*,0,0,0,0). For all common successors
of the objects 32 and 31 sFC may have values greater 0,
whereas we know that si (i ) CP,CH,MT,GT)mustbe 0.
The representatives ofG(32)∩ G(31) are 4, 91, and 11. For
these samples we therefore know their templates and thus
their qualitative loading pattern without using (lengthy and
boring) tables.

By applying eq 4 and the procedure explained above
(namely beginning with a maximal element with the largest
number of zeros as key element and proceed untilE/R5 is
exhausted) a partitioning of the set of samples is suggested
(Table 4).

Finally according to Table 4 the setE can be partitioned
into

which is considered as a main result of task 2b. (The
abbreviations arise from those tests, which are switched on
for at least the maximal elements). The symbolx means a
union of disjunctive sets.]

3.3. Aggregation Procedure (Task 3). (a)The role of a
contradictory pair: Let be q1, q2, ..., qn the n results of the
battery containingn tests. Often an overall aggregation is
performed by calculating a weighted sum (eq 1). If there is
a contradiction between two tested objects, for example, two
sediment sites a and b, thenΓ(a) > Γ(b) or Γ(b) g Γ(a)
depending on the weights, whereas for comparable pairs of
sites from ag b alwaysΓ(a) g Γ(b) follows. The advantage
of HDT is based on the fact that there is no need to find an
aggregation procedure to perform a ranking.

(b) Rankings in dependence of local incomparabili-
ties: Objects with a large local incomparability are very
sensitive with respect to the selection of weights in forming
an ordering index like eq 1 or with respect to the particular
form of the function f.

Let Γ be ordered likeΓ(a) < Γ(b) <....< Γ(x), then we
say object a has (with respect toΓ) the rank 1, object b the
rank 2, etc. The rank of an object x is denoted as Rk(x).
Equivalent objects get the same rank. Consider now different
tuples of weights, (g1,g2,..,gn), for example, motivated by
different environmental protection goals, then the ranks (of
a, b, c given byΓ) change in dependence of such tuples. An
object x may get its maximum rank Rkmax for a specific
selection of gi-values and its minimum rank Rkmin for another
one. If we define theVariability of Rk with respect to the
specific selection of an aggregation function by var(x):)
Rkmax(x) - Rkmin(x), then it can be shown by the help of the
concept of linear extensions (see ref 8) that

The inequality 5 demonstrates the loss of qualitative insights
into the set of objects, if a battery of tests is used, but an
ordering index like that calculated by eq 1 is applied.
Furthermore it can be shown by a counterexample that for
weighted sums, like eq 1, the equality in eq 5 does not hold.9

We apply the considerations above to the ranking of the
samples of Lake Ontario:

The sample 9 may serve as an example: sample 9 cannot
be compared with many other equivalence classes. For
example D9,32 (based on the quotient setE/R5) is only 2,
U(9) ) 17. Indeed for sample 9 note the following pattern:
high score for MT and a medium value for GT. This is a
singular property, which leads to only few objects compa-
rable with sample 9. Especially the local incomparabilities
indicate a high potential for a wrong ranking based on
aggregation procedures, likeΓ of eq 1, because var(9)e
17, i.e., the rank of sample 9 may vary almost over the whole
range of possible rank values: If there is a consensus, that
MT is not as important as the other tests, and its score will
get a low weight in eq 1. In consequence the sample 9 would
be ranked very low (however still worse than sample 2 and

Table 4. Partitioning of the Set of Samples

name of the
subset

representatives
of the subset

common
template

generating
key

elements
no. of
“0’s” a

FC 4,11,25,27,91 (*,0,0,0,0) 27 4
FC_MT 1,2,3,7,12,14,17,32,92 (*,0,0,*,0) 32 3
FC_MT_GT 9,18,23 (*,0,0,*,*)b) 9, 18 2
FC_CH_CP 5,31 (*,*,*,0,0)b) 31 2
“95” 95 (*,*,*,*,0) 95 1

a The number of “0’s” defines the order, by which the subsets are
formed.b The intersection of the two successor sets is contained in that
of G(27).

E )
FC x FC_MT_GTx FC_MTx FC_CH_CPx {95}

var(x) e U(x) (5)

for all x ∈ G(k) the number of “0’s” of their
templates can only increase proceeding downward
in a Hasse diagram and for all x∈ (G(k) ∩ G(k′))

all “0” of k and k′, respectively, are present
in the template of x (4)
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sample 11). If however, MT would have a high weight, then
the sample 9 may be located on the top of any total order.

3.4. Sensitivity Analysis of the Ranking (Task 4).The
ranking of the objects is sensitive to the set of attributes. To
quantify the importance of an attribute on ranking the basic
idea is to compare posets obtained by different attribute sets
with each other. To compare posets means that an appropriate
metric must be found, by which the distance between any
two posets can be calculated. There are many possibilities
to define distances (see ref 10). The concept of principal
successor sets is our starting point. The notation of successor
set must be expanded to include all the actual combinations
of attributes. Within the generalization of having a family
of attribute setsthe successor set depends not only on the
key element but also on which attributes are used. Therefore
the following notationG(k,A) or G(k,Ai) is used, whereG is
the successor set, k denotes some arbitrary chosen key
element,A is the full set of attributes, andAi is a subset of
attributes,Ai ⊆ A. Schematically the procedure can be shown
as follows (Figure 3):

We quantify the dissimilarity between two posets (E,Ai),
(E,Aj) with respect to a given key element k by counting the
elements of the symmetrized difference between two suc-
cessor sets as follows:

[Note once again that each attribute set induces a new
equivalence relation; therefore, the analysis is related on
(E,Ai) instead of (E/R,Ai).] For a given key element, two
Hasse diagrams (given by two arbitrary sets of attributes)
are more dissimilar, the more the successor setsG(k,Ai ) and
G(k,Aj) differ. We note

The square matrix, denoted byW(k) has L) 2n -1 columns
and rows, respectively, and has two properties: the “addi-
tivity principle” and the “consistency principle”.

The additivity principle is as follows: LetA1 ⊆ A2 ⊆ A3....
⊆ Av then it can be easily proved that

The “consistency equation” is as follows: Let beA1 ∪ A2 )
A3 then

The additivity equation (eq 8), for example, expresses that

the distance between the posets (E,Av) and (E,A1) is a sum
of stepwise distances. Equations 8 and 9 are computationally
useful.

The matrixW is the key for the sensitivity analysis of
ranking: This large but symmetrical matrix needs not always
be analyzed in its entirety because we are only interested in
some few attribute sets. The sensitivity analysis of the criteria
used in ranking can be performed with the following steps:

(1) Since we are interested only in comparisons of the
full attribute setA with subsetsAi, only one row of the matrix
W is of interest: W(k,A,A), W(k,A,A1), ...., W(k,A,Ap).

(2) To see the influence of attributes on a Hasse diagram
we compare the posets obtained byA with those obtained
by the attribute sets with onlyn-1 attributes. Therefore the
effect of dropping exactly one attribute is given by the
remainingn entries of the first row, W(k,A,A1), ...., W(k,A,An)
(compare Figure 3). Note that the enumerations of the subset
Ai are as follows:Ai ) {q1, ..., qi-1,qi+1, ..., qn}, A1 ) {q2,
..., qn},..., An ) {q1, ..., qn-1}

(3) The remainingn matrix elements of step (2) are put
together to form a “sensitivity tuple” of the key element k,
σ(k):) [W(k,A,A1), ... W(k,A,An)].

(4) σ(k) can also be written as [σ1 , ...,σn ]. The largerσi

the larger is the symmetrized difference betweenG(k,A) and
G(k,Ai) and correspondingly the larger the influence of
attribute qi on the position of key element k within the Hasse
diagram underA.

(5) The matrixW(k) depends on the selection of the key
element k. If however, more objects are to be analyzed we
generalize as follows

whereK is any set of key elements, in a shorter notation
W(K) ) Σ W(k). W(K) quantifies the effect of modifying
the attribute set (i) to a key element or (ii), for example, to
priority elements, or finally (iii) to the whole setE.

(6) All objects are selected as key elements. Therefore
instead ofW(k), W(E) is to be investigated.W(E) is the
total matrix of the setE. We note that a crude upper limit of
W(E,Ai,Aj) can be found simply by comparing a poset ofm
solely noncomparable elements with a poset where allm
elements are equivalent to each other. Together with eq 7

(7) W(E) is used as a measure of sensitivity of a ranking
with respect to the attributes used. Accordingly we suggest
to quantify the sensitivity by

with the enumeration scheme of step 2.
For our example the matrixW has the following values

(Table 5)
From this matrix the sensitivities are as follows:

Therefore the test “FC” is the most important one within
the attribute set containing five tests. The tests CP and CH

Figure 3. Comparison of attribute sets by studying the corre-
sponding induced posets.

W(K,Ai,Aj) ) ΣW(k,Ai,Aj) k ∈ K ⊆ E

0 e W(E,Ai,Aj) e m (m-1) (10)

σi: ) W(E,A,Ai) 1 e i e n

σ(FC) ) 795,σ(CP)) σ(CH) ) 0, σ(MT) ) 360 andσ
(GT) ) 124

W(k,Ai ,Aj):) card{[G(k,Ai)\G(k,Aj)]∪[G(k,Aj)\G

(k,Ai)]})card[G(k,Ai)∪G(k,Aj)]\[G(k,Ai )∩G(k,Aj)] (6)

W(k,Ai,Aj) g 0 and W(k,Ai,Aj) ) W(k,Aj,Ai) (7)

W(k,Av,A1) ) Σ W(k,Ar,Ar-1) r)2,...v (8)

W(k,A1,A2)dW(k,A1,A3)+W(k,A2,A3) (9)
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do not have any influence on the order of the theoretical
structure of the set of samples, i.e., does not influence the
priority of the sites. Their low sensitivity is also found by
Dutka et al., who established a regression model between
the two quantities. Note that this conclusion refers to the
classified values of the battery of tests. Therefore the result
with respect to FC should be carefully examined: The high
sensitivity may be induced by the scoring process.

Figure 4 shows the Hasse diagram (generated by the EDP-
program, WHASSE therefore drawn in its standard format:
circles, and each object as high as possible in the drawing
plane). [EDP-program WHASSE is available for testing and
noncommercial purposes from the first author. For more
information the e-mail address is given: BRG@IGB-
BERLIN.DE.]

As can easily be seen, there are dramatic changes.

4. DISCUSSION AND CONCLUSION

The battery of tests approach helps to evaluate objects
using different criteria simultaneously. [Note that the idea
of interpreting chemical aspects as basical multicriterial and
thence analyzable in terms of posets is also advocated in
refs 11 and 12. More information about posets in chemistry
can be found in a recent specific issue ofMatch.13] The
decision of which sites are “good” or “bad”, i.e., the sorting
process is more difficult the larger the number of samples
and especially the larger the number of tests, since there is
more information that can be used to differentiate among
the tested objects. This, in turn, leads to difficulties for
ranking, because the complexity of a well designed battery
is being lost, if in order to compare the tested objects, a
ranking index is constructed (e.g. eq 1). The presentation
by a Hasse diagram avoids the arbitrariness in constructing
a ranking index. Applying concepts of partially ordered sets

must not be performed in isolation. All results depend on
the data representation used. Here we wanted to demonstrate
the HDT extending the results of Dutka et al.1 Therefore we
did not need statistical analyses. However, generally, the
appropriate data representation is of much concern (see ref
14 for a very interesting probabilistic concept). The use of
cluster analysis and principal component analysis may be
helpful in obtaining a statistically relevant data representation
and in avoiding insignificant numerical differences of the
attributes, which in turn would lead to insignificant compa-
rabilities and incomparabilities and thus to very complex
Hasse diagrams.

A combination of Hasse diagram techniques and explor-
ative statistical methods could be a very promising approach
for future tasks in environmental sciences. Approaches in
this respect were followed on the pollution of regions in
Germany with heavy metals15 and on the contents of
environmental databases.16

The main advantage of a ranking by HDT is that it can be
performed without any normative constraints. HDT simply
sorts the objects without any additional information. Beyond
sorting, many conclusions can be drawn from Hasse diagrams
because they represent a well-defined mathematical structure.
Summarizing the following recommendations can be given:

• If the battery of tests is used to test many objects, perform
a cluster analysis to get rather numerically robust results.
Instead of the measured results for each object use some
characteristic values of the cluster (mean values or some
other quantities, describing a cluster center).

• Apply HDT to look for priority objects, to identify
objects or subsets with characteristic patterns (in mathemati-
cal terminology: find “order ideals”), or to select sequences
(in order theoretical terminology: “chains”) of objects.

• Perform a dimension analysis to estimate the redundancy
of the test system and a sensitivity study to identify important
or less important attributes. The rationale for the importance
of each attribute cannot be drawn from the HDT; here the
scientific background is needed: What are the characteristics
for all the tested objects, are there any internal correlations
among the attributes?

• If an aggregation is done, as for example by eq 1, then
note that the weights may have an important influence on
the ranking results viaΓ if objects have a high degree of
incomparability. i.e., to calculate the U(x)-values and estimate
the quantity var(x).
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