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This paper continues the series of publications about applications of partial ordering. The focus of this
publication is the derivation of approximate analytical expressions for the averaged rank and the ranking
probabilities. To derive such combinatorial formulas a local partial order is suggested as an approximation.
The performance of the approximation is rather high; we therefore conclude that three very simple descriptors
of the local partial order seem to be sufficient to get a rough impression of the linear order, induced by the
averaged ranks and the ranking probabilities of empirical partially ordered sets. Linear order derived from
the partial order, ranking probabilities, and other characteristics are considered as parts of a so-called “General
Ranking Model” (GRM). Following the local partial order, the averaged rank of an object x can be estimated
applying the following simple formula: Rkav ) (S+1)*(N+1)/(N+1-U). S is the number of successors of
the object x, N is the total number of objects (of the quotient set), and U is the number of objects incomparable
with x. More complex formulas for the ranking probabilities are given in the text. A list of abbreviations
and symbols can be found in Tables 3 and 4.

INTRODUCTION

The mathematical structure of partial order gains more and
more interest. This may be documented not only by the
existence of an own mathematical journal, called “Order”,
but also by an increasing number of publications in chemistry
and environmental sciences, as disclosed in e.g. the publica-
tions of Randic,1-3 Klein,4-6 or Halfon.7-10 The increasing
importance of this mathematical field is further acknowl-
edged through an extra issue of MATCH(Comm. Math
Comp. Chem.), which was edited by D. J. Klein and J.
Brickmann11 and by the regular workshops about partial order
in chemistry and environmental sciences, which were initial-
ized by the first author in 1998.

Partial order may be useful in ecology, to find appropriate
habitat conditions or in environmental chemistry to sort
chemicals. Often however the fact that no linear order is
found, hampers the applications. Therefore the concept of a
General Ranking Model (GRM) was introduced, which is
based on the set of linear extensions (for details, see ref 12).
From the set of linear extensions an averaged rank, Rkav,
can be calculated, as was shown by P. Winkler.13 As the
number of linear extension increases dramatically with the
number of objects (approximately with N!, N being the
number of objects), gathered in the set to be partially ordered,
a straightforward procedure is often not applicable. Thus it
was shown in ref 12, how an iterative scheme can be
applied: Its central topic is the estimation of the averaged
rank by a sequence of randomly created linear extensions.

This paper, however investigates if the averaged rank can
be estimated in a more direct manner. If this was possible,
then we would have three variants to calculate the averaged
rank:

1. the straightforward (“exact”) calculation, examining the
full set of linear extensions,

2. the iterative scheme by a sequence of order preserving
maps leading to randomly created linear extensions, and

3. the use of a local partial order model (LPOM).
The paper focuses on the third variant by presenting an

approach, based on a local partial order model (abbr.:
LPOM), constructed for each object x, taken from the ground
set G. A partial order on G is denoted (G,e). We assume
that G is a quotient set; the objects may be for example
chemicals, geographical sites, etc. which are characterized
by a tuple (q1,q,2,..,qn) of attributes. The equivalence class
is induced by the equivalence relation: equality of tuples.
For details, see ref 14. In order not to overburden the paper
with mathematical sophistication we speak of objects,
independently whether the objects are singletons or equiva-
lence classes with more than one object.

METHODOLOGICAL DEVELOPMENT

The Role of Averaged Ranks.As it will be shown that
the averaged rank of an object, x, is mainly controlled by
the number of objects ranked below (successors of x) and
objects ranked above x (predecessors) a warning remark will
be useful in advance: The dependence just on the number
of successors and predecessors means that an object with
many successors will tend to get a higher averaged rank
compared with one, which has instead many predecessors.
Therefore, to let the average ranking concept senseful, the
empirical partial order must be well justified. What does this
mean? If two objects x, y are comparable (x> y or y > x)
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or incomparable (x|| y, “||” is the sign for incomparability),
then both expressions of the partial order should be robust,
even if noise (statistical deviations) is present. If for example
the statistical range of data allows in one case x> y, and in
another case x< y because for example the standard
deviations are high enough, then we do not think of an
empirical partial order as a well justified one. Only in the
case of relevant comparable and incomparable relations the
averaged rank is a reasonable construction. Therefore it is
highly recommended to perform a preprocessing of data, for
example by cluster analysis, see for example ref 15 or by a
careful rounding procedure, see ref 16.

Local Partial Order Model (LPOM). A partial order of
N objects can be represented by a Hasse diagram. The
theoretical base of the so-called “Hasse diagram technique”
(HDT) or Partial Order Theory (POT) is explained in several
papers, for example see ref 17. We omit therefore in this
short communication further details of this method (see also
textbooks18,19). In this study the application of a local partial
order model is the essential step in order to estimate the
averaged rank. The basic feature of the local partial order
model (LPOM) is that the Hasse diagram (HD) representing
the partial order of the quotient set (consisting of N objects
(or classes)) and which is called HDtot is substituted by N
graphs, called HDloc. As each object leads to its own HDloc,
it is sensible to write HDloc(x) in order to refer to the local
Hasse diagram found for object x. A LPOM for any object
x is obtained counting (i) all successors and (ii) all predeces-
sors of x (in a graphical representation both sets may
arranged in any linear extension) and all objects “ui”,
incomparable with x (i.e. all elements ui || x). The incom-
parable objects ui are considered as isolated objects within
HDloc(x).

In a recent publication by Lerche et al.22 12 high
production volume chemicals (HPVC) were discussed. The
HDtot representing eight of these HPVC is displayed in Figure
1 (only their identifiers are shown here for illustration as
the individual chemicals are not of interest here). Figure 1
further shows how a HDloc for one of the chemicals, DIM,
can be created from the HDtot.

The US-Model.Both, in the HDtot and in the HDloc two
statements are evident:

The maximum and minimum possible ranks of x, Rkmax-
(x) and Rkmin(x), will be as follows:

S is the number of successors of x (note that the ground set
G of the partially ordered set is assumed to be a quotient
set), and U is the number of objects incomparable to x.
Therefore there is a closed interval Iclosed:) [Rkmin(x), Rkmax-
(x)] (also called a “ranking window”) which covers the
possible values of the averaged rank. A straightforward
idea might be to select the arithmetic mean of Rkmin and
Rkmax as an approximation of the averaged rank of x, Rkav-
(x).

This approximation within the LPOM model leads to an
expression for the true Rkav, which we call Rkav(0).

As Rkav(0) only depends on U and S, we call this
approximation, based on LPOM, the US-model.

To derive a combinatorial formula for the averaged rank
as done above four questions arise:

(1) Is the averaged rank of an object x independent of
how the Hasse diagram of the order ideal O(x), i.e., the
subposet of successors of x, looks like? (For order ideals,
O(x), and the analogous dual construction of a subposet of
predecessors of x, called order filter F(x), see ref 18 and
Figure 2.)

(2) Objects, which are incomparable to x, may be related
to x in several ways as illustrated in Figure 2. They may be
isolated objects (u1 in Figure 2) or incomparable to x but
above some successors of x (u2 and u4 in Figure 2), and they
can also be incomparable to x but below some predecessors
(u3 in Figure 2). To what extent will the different graph
theoretical relations of objects, incomparable to x, influence
the averaged rank of x?

(3) The US-model implies that the averaged rank will be
in the middle of the “ranking window”. Is this implication
justified?

(4) Is it possible to refine the estimation of the averaged
rank by distributing each element ui || x. over theS-x-P
chain?

Figure 1. Constructions of a LPOM for one of the eight chemicals,
namely DIM. Note, that the chemicals 4NA and DIM would have
an identical LPOM, because both chemicals “see” the same number
of successors, predecessors, and incomparable objects.

Rkmax(x)) S + 1 + U (1)

Rkmin(x) ) S + 1 (2)

Figure 2. Four incomparable objects to the object x, however
differently related to x. For example, an extension (by an order
preserving map) such that u2 will be comparable with x would have
3 positions (above b, x, and a), whereas a similar extension for u4
would have 4 positions (above c, b, x, and a). The order ideal O(x)
encompasses the elements x, b, and c, whereas the order filter F(x)
has a and x as its only elements, theS-x-Pchain: c< b < x < a
(see also the text).

Rkav(0) ) (Rkmax + Rkmin)/2 ) S + 1 + U/2 (3)
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Question (1):
(1a) Supposed, there are no incomparable objects to the

specified object x: In that case all linear extensions will
contain x in the same position, only the number of linear
extensions will depend on the structure of the order ideal
O(x) and order filter F(x) of x in HDtot.

(1b) Suppose now that there are incomparable elements,
then

•there may be additionally an influence of the predecessors
and of the structure of the corresponding order filter F(x),
and

•there is the question of how the incomparable objects can
be distributed over the linear order, which is constituted by
x and its successors and predecessors, respectively.

It is still not strictly mathematically proven; however,
it seems as if the first question can be answered with a
“yes”, i.e., that the averaged rank does not depend on the
structure of the order ideal or order filter (see also “Discus-
sion”).

Question (2): All evidence shows that the assumption
within LPOM, namely considering all objects incomparable
with x in HDtot as isolated objects in HDloc(x), independently
on their different relations to x (compare u1 to u4 in Figure
2) is the main and crucial one in order to estimate averaged
ranks. A forthcoming paper will show results for tree-like
Hasse diagrams.

Questions (3 and 4): To answer these questions the
concept of ranking probabilities must first be introduced.

Ranking Probabilities. The set of linear extensions can
be seen as another representation of a partial order (for details
see ref 19). If each single linear extension had the same
weight, one could see the set of linear extensions as a
probability space. Counting linear extensions of a certain
property and comparing this number with the total number
of linear extensions, eP, gives a probability to obtain a certain
property. Here it is of main interest to ask for the probability
of an object to have a certain rank. In the former section it
was shown that the rank of an object varies between two
boundaries, which can be easily determined. Thus we may
ask for the probability of the rank of an object x, rk(x) having
a certain prescribed rank, Rk. Here the possible range for
Rk is as follows:{Rkmin, Rkmin +1,..., Rkmax}. Thus, we have
to analyze the discrete function prob(rk(x)) Rk). Figure 3
shows an example.

The function prob(rk(x)) Rk) may have different shapes
andsin principleseven different local maxima. Therefore,

knowing the interval for the ranks the expectation value for
the rank depends still on the shape of prob(rk(x))Rk).
An important simplification is therefore exhibited by the
Aleksandrov-Fenchel theorem which states that prob-
(rk(x))Rk) found within the set of linear extensions is
unimodal.20 The prob(rk(x))Rk)-function may be roughly
sketched by three different forms, as Figure 4 shows. For
the sake of readability in Figure 4 we use continuous curves
for the probability density instead of discrete ranking
probability values.

Now, the US-model is failing in the case of shape (1) and
shape (3) (see also Figure 10 for an example of different
shapes). Only in the case of shape 2 the US-model may be
appropriate. Therefore, to answer question 3 the US-model
has to be extended.

USN-Model. Due to the construction of LPOM there are
in general some U objects, which are not comparable with
x. The averaged rank will thus depend on how these U
objects are distributed within the chain formed by the
successors, the object (remember, this may also be a class
of objects) x and predecessors (we call this chainS-x-P).
This was not taken into account in the US-model. In the
following approximation the ordering and partitioning of the
single incomparable objects in relation to the single succes-
sors and the single predecessors is neglected within the
LPOM (see Figure 1). All incomparable objects are consid-
ered as one single object, which can be located among either
the successors or predecessors. This leaves only two possible
rankings for x: rk(x)) S + 1 + U, when all the U objects
are placed among the successors and rk(x)) S+1, when all
the U objects are placed among the predecessors. How often
one of the two ranks will be realized depends on the number
of successors of x, S and the number of predecessors of x,
P. An approximately averaged rank is thus defined as the
weighted sum of these possible rankings as

S + 1 positions to put U objects below x. The induced
ranking is rk(x)) S + 1 + U.

P + 1 positions to put U objects above x. The induced
ranking is rk(x)) S + 1.

Figure 3. An example for the function prob(rk(x))Rk), Rk ∈
{Rkmin, Rkmin+1,...,Rkmax}.

Figure 4. Possible shapes for the prob(rk(x)-Rk)-function and the
allowed window for ranking values. The example shown in Figure
3 is a realization of the shape (1).
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The averaged rank will therefore be

Taking into account

Equation 4 can thus be rearranged into

The estimation of the averaged rank now depends on U,
S, and N. Therefore this model is called the USN-model.

Equation 6 implies the following:
(a) if U ) 0 then Rkav(1) ) S+1 ) Rkav(0).
(b) if S ) P then Rkav(1) ) Rkav(0)

(c) if P ) 0 then Rkav(1) ) S + 1 + U/w g Rkav(0). As w
equals 1+ 1/(S+1) e 2

(d) if S )0 then Rkav(1) ) (N+1)/(P+2) e Rkav(0)

The results (c) and (d) show that the US-model underes-
timates and overestimates Rkav(1) when P) 0 and S) 0,
respectively.

Performance. Although the USN-model is still an ap-
proximation due to the different nature of incomparable
objects and although the US-model seems to be still more
approximative in its nature both models are tested. With test
examples of partially ordered sets (posets), having 5-7
objects (depending on the structure of the Hasse diagram
the computation of the linear extensions can be very time-
consuming, when the number of objects exceeds 10) the exact
values by the straightforward calculation were compared with
those of both models.

For the evaluation of the performance two functions are
defined:

and

We arrived at a total of 36 cases. In Figure 5a the results
are shown for the US-model, and Figure 5b shows the results
for the USN-model. It is striking that the USN-model is better
than the US-model; however, there is a bias for higher delta1-

values. Obviously the USN-model underestimates the exact
values more often than overestimates them. This fact,
however, may be due to the rather restricted extent of the
test set of posets and of objects.

In Table 1 further statistical results are shown. To check
both models the linear regression

was examined. Ideallyt ) 1, s ) 0, and r2
DF, and the

regression coefficient corrected for freedoms, should be 1.
Ranking Probabilities within the USN-Model. To com-

plete the USN-model, the ranking probability of an object
to get a prescribed rank Rk, prob(rk(x)) Rk) should be
estimated. Of special interest are prob(rk(x)) Rkmin) and
prob(rk(x)) Rkmax), respectively. As explained earlier, this
task is equivalent to count those linear extensions of HDloc-
(x), where the rank of x is just Rkmin and Rkmax, respectively.
This is a combinatorial exercise, which is extremely simpli-
fied by knowing a general formula for the number of linear
extensions: If the poset (G,e ) consists of several disjunct
posets G′i, the number of linear extensions (eP) of the poset
(G, e ) can be calculated by applying eq 8. This equation
relates the number of linear extensions of disjunct subposets
(G′i, e ), ePi, with the number of linear extensions of the
poset (G,e ), eP.

G ) xi G′i (the disjunct union of subgroundsets, i.e., G′i
∩ G′j ) L for all i * j)

Ni ) card G′i (the number of objects of each subposet)

(See for example ref 21.)
To apply this formula within the LPOM-concept, an

extension (order preserving map) has to be performed, where
the U objects are located either above (estimation of Rkmin)
or below x (estimation of Rkmax), see Figure 6.It is now very
simple to calculate prob(rk(x)) Rkmin) by taking into account
that in the case of Rkmin the U objects can only mix with the
predecessors of x. Therefore eq 8 can be applied, where the
one subposet is formed by the predecessors and the other
by U isolated objects.

Subposet 1 is the set of U isolated objects. Subposet 2 is
the set of predecessors, forming a chain (by assumption of
LPOM). Therefore, the number of linear extensions of U
objects is U! and of P objects of the predecessor chain 1.
The number of linear extensions resulting from a poset where
U objects mix only with the predecessors of x is thus

Figure 5. Performance of the US-model (a) and of the USN-model
(b).

Rkav(1) ) [(S+1+U)*(S+1) + (S+1)*(P+1)]/

[P+1+S+1] (4)

N ) S + 1 + P + U (5)

Rkav(1) ) (S+1)*(N+1)/(N+1-U) (6)

delta0: ) Rkav exact- Rkav(0)

delta1: ) Rkav exact- Rkav(1)

Table 1. Statistical Parameters of the Regression Analysis of Eq 7

model n r2DF F t s

US 36 0.96 863 1.2 -0.8
USN 36 0.98 1526 0.9 0.45

Rkav exact) t* Rk av(i) + s

Index i)0 for the US-,i)1 for the USN-model (7)

eP) (∏
i

eP′i) ‚

(∑
i

Ni)!

∏
i

(Ni!)

(8)

ePP(Mixture of U objects with the chain of P objects))
U!*1 * (U +P)!/(U!*P!)
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The total number of linear extensions (mixture of U objects
with the S-x-P chain) are

Considering the set of linear extensions as probability
space means that now the probability of object x to get the
rank ) Rkmin is just

Rearrangement leads to the final equation

and by similar arguments eq 10 can be derived taking now
into account the mixing of U objects with the successors
(leading to Rkmax)

It is not difficult to obtain the probability for any rank
rk(x) ) S + 1 + k, with 0 e k e U, whereby the selection
of k objects out of U isolated objects can be done by U!/
[(U-k)!*k!] ways.

This formula encompasses the USN-model. A test with
empirical posets and with a systematic study of the role of
the kind, how objects ui || x are connected with theS-x-P-
chain is under operation.

Figure 7 shows some examples of the graph of prob(rk-
(x) ) S+1+k) ) f(k). Together with (i) the normalization,

(ii) the Aleksandrov-Fenchel-theorem, (iii) knowledge of the
averaged rank, and (iv) eventually calculating some other
probabilities, applying eq 11, it should be possible to sketch
now a rather realistic graph of the ranking probabilities based

on the USN-model and thus for any objects taken from an
empirical poset.

Example. Considering again the 12 HPVC discussed in
ref 22. Here only the results relevant for this paper should
be presented: In Figure 8 the HDtot of all 12 chemicals (again
only their identifier are shown) is given. The partial order
results from a comparison of these chemicals with respect
to the four attributes

• production volume,
• acute toxicity,
• accumulation potential, and
• persistence.
The Hasse diagram is shown in Figure 8a consists of

three hierarchies (not connected parts of a Hasse diagram)
namely one with CHL as a minimal object, one with DIA
as maximal object, and one isolated object, MAL. Beyond
this an example of the longest chain is shown, where a clear
comparison can be done. Often this information is too poor
for decision makers, and therefore the GRM shall be applied.
Figure 9 shows the straightforward calculated ranking
probabilities of four chemicals, ISO, ATR, CHL, and CNB.
Note that once again the ranking probabilities are shown as
a continuous function (for the sake of clarity). The averaged
ranks can now be determined by

One can see that only in one case, namely ATR is the
US-model appropriate, whereas in all other three cases the
averaged rank tends to be located near the ends of the
allowed ranking intervals. In Figure 10 two chemicals CNB
and CHL, respectively, are closely considered, and the ranks
calculated exactly and estimated according to the US- and

Figure 6. Extension of LPOM. Note, that the linear order formed
by the successors, predecessors and x is called aS-x-P chain.

ePtot(Mixture U, N-U) ) U! * 1 * N!/[N-U)!*U!]

ePP/ePtot ) U!*1 * (U +P)!/(U!*P!)/

{ U! * 1 * N!/[N-U)!*U!] }

prob(rk(x)) Rkmin) ) [(N-U)!/N!]*[(U +P)!/P!] (9)

prob(rk(x)) Rkmax) ) [(N-U)!/N!]*[(U +S)!/S!] (10)

prob(rk(x)) S + 1 + k) )

(Uk ) ‚
((U - k + P)!

P! ) ‚ ((S + k)!
S! )

( N!
(N - U)!)

(11)

∑
Rk

prob(rk(x)) Rk) ) 1 (12)

Figure 7. N ) 10, U ) 5, case (a): P) 0, S) 4, case (b): P)
2, S ) 2, case (c): P) 4, S ) 0.

Figure 8. Hasse diagram of the 12 HPVC, discussed in ref 22.
One of the longest chains is drawn as a bold line: Here an
unambiguous ranking can be obtained.

Rkav exact) ∑prob(rk(x))Rk)*Rk (13)
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USN-model, respectively, are additionally drawn as vertical
lines. As one can see, within the example given here, the
approximation by the USN-model works quite well.

DISCUSSION

By the two approximations, the US- and the USN-models
one can avoid the time-consuming direct calculation of
averaged ranks. This point is important from a practical,
computational point of view, if the ground set G contains
more than 25 objects. However, the insight, of how the
structure of a Hasse diagram influences the outcomes of the
averaged ranking, is of high interest too. It was demonstrated
by the chosen example that the USN-model suffices to
calculate the ranking probabilities and the averaged rank.
This fact also means that the main influence is expressed by
the three quantities: U, S, and P. Obviously details of the
structure of a Hasse diagram do not influence the charac-
teristics of the GRM heavily.

Besides the approximation, which is implied by supplying
HDtot by N local Hasse diagrams, HDloc, the derivation of
eq 4 seems to be very crude: Thus we come back to question

4, which we have stated in the former sections of this text:
In a correct manner one should select k objects out of U
objects and locate them below and the remaining U-k
objects above x. The quantity k may vary in the range from
0 to U. Following eq 8, i.e., counting the linear extensions,
and applying the same technique as shown in more detail,
when eq 9 was derived, one can derive an exact expression
for the USN-model. The result is shown in eq 14.

The summation index k counts the incomparable objects
which are located below the specified object x, i.e., k)
0,...U. By this it is taken into account that the U incomparable
objects are not at once located somewhere within theS-x-

Figure 9. Ranking probabilities as a function of ranks. Note the different shapes of the functions.

Figure 10. Ranking probabilities and averaged ranks (calculated directly by the software-program WHASSE (ref 23)), by US- and by
USN-model).

Rkav1a)

∑
k)0

U ( U!

(U - k)!‚k!) ‚
(S + k)!

S!
‚

((U + P) - k)!

(P)!
‚(S + 1 + k)

∑
k)0

U ( U!

(U - k)!‚k!) ‚
(S+ k)!

S!
‚

((U + P) - k)!

(P)!

(14)
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P-chain but that there is a partitioning among the U objects.
Applying the formalism of using eq 8 means that not only
the U objects are distributed on several locations but also
that it is important in which order this is done. This, however,
is not important, if only the averaged rank is to be calculated.

Therefore one can take care for the distribution of U single
objects over the chainS-x-Pbut disregard the resulting orders
(which remembers somewhat on procedures in statistical
thermodynamics24). In that case another formula can be
found. It isssimilar to eq 4sjust a weighted sum, where
now, however, not only two ranks are possible but also all
ranks between S+ 1 and S+ 1 + U. When k objects are
located within the successors of x and U-k within the
predecessors, then the rank is S+ 1 + k and is realized
(U!/[(U-k)!*k!])*(S +1)k*(P+1)U-k times.

Equation 15 is the adequate expression for the calculation
of averaged ranks within the LPOM-concept.

The equivalence of eq 14 either to (15) or directly to (4)
could up to now not be established, albeit no example could
be found, where a numerical difference within these three
expressions appears (testing with the software product
Mathcad PLUS 6.0). Clearly it is planned to complete the
formalism by proving the equivalences using the principle
of induction over U or any other combinatorial proof
technique. Note that the denominator of eq 15 is equal to
(S+P+2)U due to the binomial theorem.

Summarizing: There are three equations, by which the
averaged rank of an USN-model can be calculated. At least
numerically the three eqs 4, 14, and 15 seem to be equivalent.
Obviously, the estimation of the averaged ranks is not
dependent on how the U objects are distributed within the
predecessors and within the successors, respectively. This

Table 2. Comparison of Three Expressions for the USN-Model

equation description

4 U objects are en bloc put into the different
positions of the chainS-x-P

14 U single objects are put into the different positions of the
chainS-x-Pand the resulting orders are counted

15 U single objects are put into the different positions of the
chainS-x-Pand the resulting orders
arenot considered

Table 3. List of Abbreviations (Alphabetically Sorted)

abbreviation explanation remark

GRM General Ranking Model theoretical concept how to find and to characterize linear orders derived
HD Hasse Diagram from empirical posets
HDT Hasse Diagram Technique The name Hasse has its origin from the German mathematician H. Hasse,
HPVC High Production Volume Chemicals who made this kind of directed acyclic graphs popular.
LPOM Local Partial Order Model Here the most simple one is shown and discussed. Forthcoming
posets Partially Ordered SETS papers will study more complex LPOMs.
POT Partial Order Theory In comparison to HDT the concept POT pronounces the theoretical
US-model a concept to estimate the averaged rank of an

object x just by knowing the number of
objects, incomparable to x (U) and the
number of successors of x (S).

aspects. Often HDT and POT are used as synonyms.

USN-model an improved concept to estimate the averaged
rank of an object x by additionally taking
into account the number of predecessors
of x

As U, S, and P are related to N, the final equation contains U, S, and N.

Table 4. List of Symbols

symbol explanation remark

delta0, delta1 deviations of exact values from approximated ones
eP number of linear extensions A crude upper bound is N!
G,G′i ground sets of the posets
N, S, P, U number of equivalence classes, number of successors-,

of predecessors of x, number of objects
incomparable with x

characterizing numbers of a (local) Hasse diagram

O(x), F(x) order ideal, order filter of x See Figure 2 for examples.
prob(rk(x))Rk) probability that the rank rk(x) gets the value Rk
qi ith attribute of an object. The starting point for HDT is to consider a specific

order relation, namely the product
rk(x) rank of object x considered as random variable order or component wise order.
Rkav, Rkav(...) averaged rank, different approximations The concept LPOM can be easily extended;

however, each refinement implies a
manifold of different cases.

Rkav1a, Rkav1b two expressions of averaged ranks based on more
sophisticated assumptions

eqs 14 and 15

Rkmin, Rkmax lower and upper bound of the interval of accessible ranks Define a “ranking window”.
S-x-P a chain built from the successors of x, the object x and

the predecessors of x
See for an example Figure 2.

t,s parameters of the regression equation equation 7
x || y object x is incomparable with y

Rkav1b)

∑
k)0

U

(S + 1 + k) ‚ (Uk ) ‚ (S + 1)k ‚ (P + 1)U-k

∑
k)0

U (Uk ) ‚ (S + 1)k ‚ (P + 1)U-k

(15)
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fact may be interpreted as an out-averaging of the k, U-k
objects located below and above the one interesting object
x. The main features are summarized in Table 2.

Could the LPOM-concept be improved? Obviously there
will be an influence by the different relation of objects
incomparable with the one specified. This point was already
discussed in Figure 2. Therefore it seems promising to
develop further the formalism of the LPOM-concept by
introducing a classification about the incomparable objects.

Taking the practical applications of the USN-model into
account, it is possible to get a linear rank, without introducing
further subjective preferences bysfor examplesweighting
the attributes, i.e., calculating a positive monotonuous
function with respect to the attributes, see ref 17. Formally
the weights are here supplied by the positions of any object
of interest within the Hasse diagram. Therefore the final
result can be manipulated by the number of successors and
predecessors, which in turn depends on the preprocessing
of the data matrix. One of the next topics which are of crucial
importance within the GRM is to derive some standards in
the preprocessing of data.
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