对抗解释结构模型(AISM)在线计算-快速拓扑序,无需可达矩阵步骤


论文写作或者计算需要帮助可发邮件到 hwstu # sohu.com 把 #替换成@,请说清来意,不必拐弯抹角,浪费相互之间的时间。
目前暂时限制到8个要素的输入,输入更多要素需付费。

返回首页

付费后取消要素数目的限制。点下面的+号后不再是灰色,可自行运算

$$ \require{cancel} \require{AMScd} \begin{CD} 点击+号 @>> >增加要素数目 @>> > 输入关系矩阵(对角线不用输入) @>>> 点计算,即列出所有过程与结果。@>>>层级拓扑图可以拖拽 \\ \end{CD} $$

点击计算按钮后会自动运算,并记录每个过程,并绘制可以拖拽的拓扑层次图(俗称扯蛋模型) 。


流程图与说明如下


你没有输入参数,本处随机给出一个



本系统基本信息为


$$A=\begin{array} {c|c|c|c|c|c|c|c}{M_{8 \times8}} &E1 &E2 &E3 &E4 &E5 &E6 &E7 &E8\\ \hline E1 & & & & &1 & & & \\ \hline E2 & & & &1 & &1 & & \\ \hline E3 & &1 & & & & & & \\ \hline E4 & & & & &1 & & & \\ \hline E5 & & &1 & & & &1 & \\ \hline E6 & & & & &1 & & & \\ \hline E7 & & & & & & & &1\\ \hline E8 & & & & & & & & \\ \hline \end{array} $$

论文范本——要素关系为优劣关系,好坏关系:基于对抗解释结构模型的军事训练方法可推广性评价模型

论文范本——要素关系为因果关系:Research on the Influencing Factors of Kite Culture Inheritance Based on an Adversarial Interpretive Structure Modeling Method

论文范本——要素关系为优劣比较关系:基于对抗解释结构模型方法的沿海智慧港口竞争力研究_谢希霖

论文范本——要素关系为因果关系:基于Probit-AISM模型的生态农业采纳行为分析_魏雪

论文范本——要素关系为因果关系:基于AISM的水利工程项目治理影响因素研究_赵贤晨

论文范本——要素关系为因果关系:基于DEMATEL-AISM法的的装配式建筑预制构件成本影响因素分析_魏宏亮

论文范本——要素关系为优劣比较关系:中国东部省份科技创新能力综合评价 ——基于TOPSIS-AISM模型

论文范本——要素关系为因果关系:基于DEMATEL-AISM的建筑业数字化转型影响因素研究-何晓川

论文范本——要素关系为优劣比较(偏序)关系:基于SAHDT方法的湖南省土地生态安全评价-谭文清

论文范本——要素关系为因果关系:核电施工企业ES公司安全管理绩效评价研究-赵新蕊

论文范本——要素关系为优劣比较(偏序)关系:马来西亚高校疫情应急管理CSFs研究———基于DEMATEL-AISM的分析

论文范本——要素关系为因果关系:Hierarchical topological model of the factors infuencing adolescents’ non-suicidal self-injury behavior based on the DEMATEL- TAISM method 原文下载

论文范本——要素关系为优劣比较关系:Comprehensive evaluation of water ecolo...the Yangtze River Economic Belt, China

论文范本——要素关系为优劣比较关系:Structure Analysis Research of Transportation Major Curriculum System in Application-Oriented Universities under the Perspective of Engineering Education Accreditation

论文范本——要素关系为因果关系:Research on infuencing factors of artifcial intelligence multi-cloud scheduling applied talent training based on DEMATEL-TAISM


原始关系矩阵:

$$A=\begin{array} {c|c|c|c|c|c|c|c}{M_{8 \times8}} &E1 &E2 &E3 &E4 &E5 &E6 &E7 &E8\\ \hline E1 & & & & &1 & & & \\ \hline E2 & & & &1 & &1 & & \\ \hline E3 & &1 & & & & & & \\ \hline E4 & & & & &1 & & & \\ \hline E5 & & &1 & & & &1 & \\ \hline E6 & & & & &1 & & & \\ \hline E7 & & & & & & & &1\\ \hline E8 & & & & & & & & \\ \hline \end{array} $$

邻接相乘矩阵为:

$$B=\begin{array} {c|c|c|c|c|c|c|c}{M_{8 \times8}} &E1 &E2 &E3 &E4 &E5 &E6 &E7 &E8\\ \hline E1 &1 & & & &1 & & & \\ \hline E2 & &1 & &1 & &1 & & \\ \hline E3 & &1 &1 & & & & & \\ \hline E4 & & & &1 &1 & & & \\ \hline E5 & & &1 & &1 & &1 & \\ \hline E6 & & & & &1 &1 & & \\ \hline E7 & & & & & & &1 &1\\ \hline E8 & & & & & & & &1\\ \hline \end{array} $$

运用tarjan(塔杨)算法下三角重排缩点矩阵


$$L=\begin{array} {c|c|c|c|c|c|c|c}{M_{4 \times4}} &E8 &E7 &E2+E3+E4+E5+E6 &E1\\ \hline E8 &1 & & & \\ \hline E7 &1 &1 & & \\ \hline E2+E3+E4+E5+E6 & &1 &1 & \\ \hline E1 & & &1 &1\\ \hline \end{array} $$

利用拓扑运算,求出骨架矩阵S'


$$S'=\begin{array} {c|c|c|c|c|c|c|c}{M_{4 \times4}} &E8 &E7 &E2+E3+E4+E5+E6 &E1\\ \hline E8 & & & & \\ \hline E7 &1 & & & \\ \hline E2+E3+E4+E5+E6 & &1 & & \\ \hline E1 & & &1 & \\ \hline \end{array} $$

骨架矩阵加上单位矩阵


$$S+I=\begin{array} {c|c|c|c|c|c|c|c}{M_{4 \times4}} &E8 &E7 &E2+E3+E4+E5+E6 &E1\\ \hline E8 &1 & & & \\ \hline E7 &1 &1 & & \\ \hline E2+E3+E4+E5+E6 & &1 &1 & \\ \hline E1 & & &1 &1\\ \hline \end{array} $$

对应的可达集合如下


E8 E8、
E7 E8、E7、
E2+E3+E4+E5+E6 E7、E2+E3+E4+E5+E6、
E1 E2+E3+E4+E5+E6、E1、

对应的先行集合如下,即骨架矩阵转置后的矩阵


E8 E8、E7、
E7 E7、E2+E3+E4+E5+E6、
E2+E3+E4+E5+E6 E2+E3+E4+E5+E6、E1、
E1 E1、

可达集合与先行集合的交集——共同集合如下


E8 E8、
E7 E7、
E2+E3+E4+E5+E6 E2+E3+E4+E5+E6、
E1 E1、

抽取的过程如下


结果优先——UP型抽取过程 原因优先——DOWN型抽取过程
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline E8&\color{red}{\fbox{E8}}&\color{red}{\fbox{E8}} \\\hline E7&E8,E7&E7 \\\hline E2+E3+E4+E5+E6&E7,E2+E3+E4+E5+E6&E2+E3+E4+E5+E6 \\\hline E1&E2+E3+E4+E5+E6,E1&E1 \\\hline \end{array} $$ $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline E8&E8,E7&E8 \\\hline E7&E7,E2+E3+E4+E5+E6&E7 \\\hline E2+E3+E4+E5+E6&E2+E3+E4+E5+E6,E1&E2+E3+E4+E5+E6 \\\hline E1&\color{blue}{\fbox{E1}}&\color{blue}{\fbox{E1}} \\\hline \end{array} $$
抽取出E8放置上层,删除后剩余的情况如下 抽取出E1放置下层,删除后剩余的情况如下
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline E7&\color{red}{\fbox{E7}}&\color{red}{\fbox{E7}} \\\hline E2+E3+E4+E5+E6&E7,E2+E3+E4+E5+E6&E2+E3+E4+E5+E6 \\\hline E1&E2+E3+E4+E5+E6,E1&E1 \\\hline \end{array} $$ $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline E8&E8,E7&E8 \\\hline E7&E7,E2+E3+E4+E5+E6&E7 \\\hline E2+E3+E4+E5+E6&\color{blue}{\fbox{E2+E3+E4+E5+E6}}&\color{blue}{\fbox{E2+E3+E4+E5+E6}} \\\hline \end{array} $$
抽取出E7放置上层,删除后剩余的情况如下 抽取出E2+E3+E4+E5+E6放置下层,删除后剩余的情况如下
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline E2+E3+E4+E5+E6&\color{red}{\fbox{E2+E3+E4+E5+E6}}&\color{red}{\fbox{E2+E3+E4+E5+E6}} \\\hline E1&E2+E3+E4+E5+E6,E1&E1 \\\hline \end{array} $$ $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline E8&E8,E7&E8 \\\hline E7&\color{blue}{\fbox{E7}}&\color{blue}{\fbox{E7}} \\\hline \end{array} $$
抽取出E2+E3+E4+E5+E6放置上层,删除后剩余的情况如下 抽取出E7放置下层,删除后剩余的情况如下
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline E1&\color{red}{\fbox{E1}}&\color{red}{\fbox{E1}} \\\hline \end{array} $$ $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline E8&\color{blue}{\fbox{E8}}&\color{blue}{\fbox{E8}} \\\hline \end{array} $$
抽取出E1放置上层,删除后剩余的情况如下 抽取出E8放置下层,删除后剩余的情况如下

抽取方式的结果如下


层级 结果优先——UP型 原因优先——DOWN型
0 E8 E8
1 E7 E7
2 E2+E3+E4+E5+E6 E2+E3+E4+E5+E6
3 E1 E1

一般性骨架矩阵


求解过程如链接所示:缩点、缩边,再把回路要素替代回去。这步是最难的,本处用的算法那人得了计算机界的诺奖-图领奖,算法为trajan算法的组合。现在的论文都忽略了这步。

以最简菊花链表示回路的一般性骨架矩阵 $S$

$$S=\begin{array} {c|c|c|c|c|c|c|c}{M_{8 \times8}} &E1 &E2 &E3 &E4 &E5 &E6 &E7 &E8\\ \hline E1 & & & & &1 & & & \\ \hline E2 & & &1 & & & & & \\ \hline E3 & & & &1 & & & & \\ \hline E4 & & & & &1 & & & \\ \hline E5 & & & & & &1 &1 & \\ \hline E6 & &1 & & & & & & \\ \hline E7 & & & & & & & &1\\ \hline E8 & & & & & & & & \\ \hline \end{array} $$

一组对抗层级拓扑图即{UP|DOWN}的原因到结果的系列层级图


对要素可以拖拽(扯蛋),尽量减少线的交叉。但是不要改变要素所在的层级,即扯蛋最好是横向的扯蛋。

UP型菊花链,即结果优先的有向拓扑层级图

  第0层
  第1层
  第2层
  第3层
E8
E7
E2
E3
E4
E5
E6
E1

DOWN型菊花链,即原因优先的有向拓扑层级图

  第0层
  第1层
  第2层
  第3层
E8
E7
E2
E3
E4
E5
E6
E1

如需用到其它方法如:扯蛋模型
可发邮件到 hwstu # sohu.com 把 #替换成@